1
|
Matos T, Hoying D, Kristopeit A, Wenger M, Joyce J. Continuous multi-membrane chromatography of large viral particles. J Chromatogr A 2023; 1705:464194. [PMID: 37419021 DOI: 10.1016/j.chroma.2023.464194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Continuous multi-column chromatography (CMCC) has been successfully implemented to address biopharmaceutical biomolecule instability, to improve process efficiency, and to reduce facility footprint and capital cost. This paper explores the implementation of a continuous multi-membrane chromatography (CMMC) process, using four membrane units, for a large viral particle in just few weeks. CMMC improves the efficiency of the chromatography step by enabling higher loads with smaller membranes for multiple cycles of column use and enables steady-state continuous bioprocessing. The separation performance of CMMC was compared to a conventional batch chromatographic capture step used at full manufacturing scale. The product step yield was 80% using CMMC versus 65% in batch mode while increasing slightly the relative purity. Furthermore, the total amount of membrane area required for the CMMC approach was approximately 10% of the area needed for batch operation, while realizing similar processing times. Since CMMC uses smaller membrane sizes, it can take advantage of the high flow rates achievable for membrane chromatography that are not typically possible at larger membrane scales due to skid flow rate limitations. As such, CMMC offers the potential for more efficient and cost-effective purification trains.
Collapse
Affiliation(s)
- Tiago Matos
- Vaccine Bioprocess Research and Development, Merck & Co., Inc., West Point, PA 19486, United States.
| | - David Hoying
- Vaccine Bioprocess Research and Development, Merck & Co., Inc., West Point, PA 19486, United States
| | - Adam Kristopeit
- Vaccine Bioprocess Research and Development, Merck & Co., Inc., West Point, PA 19486, United States
| | - Marc Wenger
- Vaccine Bioprocess Research and Development, Merck & Co., Inc., West Point, PA 19486, United States
| | - Joseph Joyce
- Vaccine Bioprocess Research and Development, Merck & Co., Inc., West Point, PA 19486, United States
| |
Collapse
|
2
|
Continuous purification of influenza A virus particles using pseudo-affinity membrane chromatography. J Biotechnol 2021; 342:139-148. [PMID: 34678401 DOI: 10.1016/j.jbiotec.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Robust and flexible continuous unit operations that enable the establishment of intensified bioprocesses is one of the most relevant trends in manufacturing of biopharmaceuticals, including virus-based products. Sulfated cellulose membrane adsorbers (SCMA) are one of the most promising matrices for chromatographic purification of virus particles, like influenza viruses. Here, a three 'column' periodical counter current set-up was used to continuously purify influenza A/PR/8/34 virus particles using SCMA in bind-elute mode. It was possible to recover 67.4% of the HA-activity and to remove 67.4% and 99.8% of the total protein and DNA, respectively. The performance of the continuous process operated over a total of 10 loops, was slightly inferior to was obtained in a comparable batch process. Nevertheless, it was possible to increase the effective usage of binding capacity to 80%, resulting on a productivity of 22.8 kHAU mlmemb-1 min-1. As a proof-of-principle, SCMA were successfully used as matrix for purification of cell-derived influenza virus particles, in continuous mode.
Collapse
|
3
|
Fei C, Gao J, Fei C, Ma L, Zhu W, He L, Wu Y, Song S, Li W, Zhou J, Liao G. A flow-through chromatography purification process for Vero cell-derived influenza virus (H7N9). J Virol Methods 2021; 301:114408. [PMID: 34896455 DOI: 10.1016/j.jviromet.2021.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
Immunization is the most effective way to respond to an influenza epidemic. To produce Vero cell-derived influenza vaccines, a more efficient, stable and economical purification process is required. In this study, we purified the H7N9 influenza virus grown in Vero cells that were cultured in a serum-free medium by using a combination of anion exchange chromatography (AEC) and ligand-activated core chromatography (LCC), which avoids the virus capture step. After purification, 99.95 % host cell DNA (hcDNA) (final concentration: 28.69 pg/dose) and 98.87 % host cell protein (HCP) (final concentration: 28.28 ng/dose) were removed. The albumin content was 11.36 ng/dose. All these remnants met the current Chinese Pharmacopoeia and WHO requirements. The final virus recovery rate was 58.74 %, with the concentration of hemagglutinin recorded at 132.12 μg/mL. The flow-through chromatography purification process represents an alternative to the existing processes for cell-derived influenza viruses and might be suitable for the purification of other viruses as well.
Collapse
Affiliation(s)
- ChengRui Fei
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - JingXia Gao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - ChengHua Fei
- Kunming Maternal and Child Health Hospital, 650031, China
| | - Lei Ma
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - WenYong Zhu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - LingYu He
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - YaNan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - ShaoHui Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - WeiDong Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Jian Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| | - GuoYang Liao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
4
|
A new and simplified anion exchange chromatographic process for the purification of cell-grown influenza A H1N1 virus. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
6
|
Use of sulfated cellulose membrane adsorbers for chromatographic purification of cell cultured-derived influenza A and B viruses. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Hydrophobic-interaction chromatography for purification of influenza A and B virus. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:103-117. [DOI: 10.1016/j.jchromb.2019.03.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/17/2022]
|
8
|
Purification of cell culture-derived influenza A virus via continuous anion exchange chromatography on monoliths. Vaccine 2018; 36:3153-3160. [DOI: 10.1016/j.vaccine.2017.06.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/18/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
|
9
|
A fast and efficient purification platform for cell-based influenza viruses by flow-through chromatography. Vaccine 2017; 36:3146-3152. [PMID: 28342667 DOI: 10.1016/j.vaccine.2017.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023]
Abstract
Since newly emerging influenza viruses with pandemic potentials occurred in recent years, the demand for producing pandemic influenza vaccines for human use is high. For the development of a quick and efficient vaccine production, we proposed an efficient purification platform from the harvest to the purified bulk for the cell-based influenza vaccine production. This platform based on flow-through chromatography and filtration steps and the process only involves a few purification steps, including depth filtration, inactivation by formaldehyde, microfiltration, ultrafiltration, anion-exchange and ligand-core chromatography and sterile filtration. In addition, in the proposed chromatography steps, no virus capture steps were employed, and the purification results were not affected by the virus strain variation, host cells and culturing systems. The results from different virus strains which produced by Vero or MDCK cells in different culturing systems also obtained 33-46% HA recovery yields by this platform. The overall removal rates of the protein and DNA concentration in the purified bulk were over 96.1% and 99.7%, respectively. The low residual cellular DNA concentrations were obtained ranged from 30 to 130pg per human dose (15µg/dose). All influenza H5N1 purified bulks met the regulatory requirements for human vaccine use.
Collapse
|
10
|
Marichal-Gallardo P, Pieler MM, Wolff MW, Reichl U. Steric exclusion chromatography for purification of cell culture-derived influenza A virus using regenerated cellulose membranes and polyethylene glycol. J Chromatogr A 2016; 1483:110-119. [PMID: 28069171 DOI: 10.1016/j.chroma.2016.12.076] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023]
Abstract
Steric exclusion chromatography has been used for the purification of proteins and bacteriophages using monoliths. The operation is carried out by mixing a crude sample containing the target species with a predetermined concentration and molecular weight of polyethylene glycol (PEG) and loading it onto a non-reactive hydrophilic surface. Product capture occurs by the mutual steric exclusion of PEG between the product and the matrix. Selectivity is significantly influenced by target product size. Product elution is achieved by decreasing the PEG concentration. In this study, a 75cm2 cellulose membrane adsorber was used for the purification of a clarified and inactivated influenza A virus broth produced in a 5L bioreactor using suspension Madin Darby canine kidney cells. Product recovery was above 95% based on hemagglutination activity and single radial immunodiffusion assays. Maximum depletion of double stranded host cell DNA and total protein was 99.7% and 92.4%, respectively. Purified virus particles showed no aggregation with a monodisperse peak around 84nm. 250mL of the clarified inactivated virus broth was purified within 40min. The surface area productivity based on the recovery of the viral hemagglutinin antigen was 28-50mgm-2h-1 depending on the feed and loading conditions.
Collapse
Affiliation(s)
- Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | - Michael M Pieler
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstrasse 14, 35390 Gießen, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Weigel T, Solomaier T, Wehmeyer S, Peuker A, Wolff MW, Reichl U. A membrane-based purification process for cell culture-derived influenza A virus. J Biotechnol 2015; 220:12-20. [PMID: 26712479 DOI: 10.1016/j.jbiotec.2015.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/24/2022]
Abstract
A simple membrane-based purification process for cell culture-derived influenza virus was established that relies on only two chromatographic unit operations to achieve the contamination limits required according to regulatory authorities. After clarification and concentration, a pseudo-affinity membrane adsorber (sulfated cellulose, SCMA) was applied for virus capture. The subsequent polishing step consisted of a salt-tolerant anion exchange membrane adsorber (STMA) to bind residual DNA. For the presented process neither a buffer exchange step nor a nuclease step for further DNA digestion were required. As a starting point, a two-salt strategy (including a polyvalent ion) was employed to screen STMA conditions in a 96-well plate format. After optimization on chromatographic laboratory scale, the virus recovery was up to 97% with a residual DNA level below 0.82%. In addition, the STMA was characterized regarding its dynamic binding capacity and the impact of flow rate on yields and contamination levels. Overall, the total virus yield for influenza virus A/PR/8/34 (H1/N1) of this two-step membrane process was 75%, while the protein and the DNA contamination level could be reduced to 24% and at least 0.5%, respectively. With 19.8μg protein and 1.2ng DNA per monovalent dose, this purity level complies with the limits of the European Pharmacopeia for cell culture-derived vaccines for human use. Overall, the presented downstream process might serve as a generic and economic platform technology for production of cell culture-derived viruses and viral vectors.
Collapse
Affiliation(s)
- Thomas Weigel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.
| | - Thomas Solomaier
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Faculty of Pharmaceutical Biotechnology, Biberach University of Applied Sciences, 88400 Biberach, Germany
| | - Sebastian Wehmeyer
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Department of Biotechnology, Bielefeld University of Applied Sciences, 33615 Bielefeld, Germany
| | - Alessa Peuker
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Michael W Wolff
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
12
|
Improving the downstream processing of vaccine and gene therapy vectors with continuous chromatography. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.15.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
|
14
|
A flow-through chromatography process for influenza A and B virus purification. J Virol Methods 2014; 207:45-53. [DOI: 10.1016/j.jviromet.2014.06.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022]
|
15
|
Kröber T, Wolff M, Hundt B, Seidel-Morgenstern A, Reichl U. Continuous purification of influenza virus using simulated moving bed chromatography. J Chromatogr A 2013; 1307:99-110. [DOI: 10.1016/j.chroma.2013.07.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/16/2022]
|
16
|
Morokutti A, Redlberger-Fritz M, Nakowitsch S, Krenn BM, Wressnigg N, Jungbauer A, Romanova J, Muster T, Popow-Kraupp T, Ferko B. Validation of the modified hemagglutination inhibition assay (mHAI), a robust and sensitive serological test for analysis of influenza virus-specific immune response. J Clin Virol 2013; 56:323-30. [PMID: 23375739 DOI: 10.1016/j.jcv.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND The hemagglutination inhibition assay (HAI) is universally regarded as the gold standard in influenza virus serology. Nevertheless, difficulties in titre readouts are common and interlaboratory variations are frequently reported. OBJECTIVE We developed and validated the modified HAI to facilitate reliable, accurate and reproducible analysis of sera derived from influenza vaccination studies. STUDY DESIGN Clinical and preclinical serum samples, NIBSC reference sera and seasonal influenza virus type A (H1N1 and H3N2) and type B antigens were employed to validate the mHAI. Moreover, pandemic virus strains (H5N1 and H1N1pdm09) were used to prove assay robustness. RESULTS Utilisation of a 0.08% solution of stabilised human erythrocytes, assay buffer containing bovine serum albumin and microscopical plate readout are the major differences between the modified and standard HAI assay protocols. Validation experiments revealed that the mHAI is linear, specific and up to eightfold more sensitive than the standard HAI. In 95.6% of all measurements mHAI titres were precisely measured irrespective of the assay day, run or operator. Moreover, 96.4% (H1N1) or 95.2% (H3N2 and B), respectively, of all serum samples were determined within one dilution step of the nominal values for spiked samples. Finally, the mHAI results remained unaffected by variations in virus antigens, erythrocytes, reagents, laboratory location, sample storage conditions or matrix components. CONCLUSION The modified HAI is easy to analyse, requires only a single source of erythrocytes and allows utilisation of numerous influenza virus antigens, also including virus strains which are difficult to handle by the standard HAI (e.g. H3N2, H5N1 and H1N1pdm09).
Collapse
Affiliation(s)
- A Morokutti
- AVIR Green Hills Biotechnology AG, Forsthausgasse 11, A-1200 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Saito M, Kurosawa Y, Okuyama T. Scanning electron microscopy-based approach to understand the mechanism underlying the adhesion of dengue viruses on ceramic hydroxyapatite columns. PLoS One 2013; 8:e53893. [PMID: 23326529 PMCID: PMC3542262 DOI: 10.1371/journal.pone.0053893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
Although ceramic hydroxyapatite (HAp) chromatography has been used as an alternative method ultracentrifugation for the production of vaccines, the mechanism of virus separation is still obscure. In order to begin to understand the mechanisms of virus separation, HAp surfaces were observed by scanning electron microscopy after chromatography with dengue viruses. When these processes were performed without elution and with a 10–207 mM sodium phosphate buffer gradient elution, dengue viruses that were adsorbed to HAp were disproportionately located in the columns. However, when eluted with a 10–600 mM sodium phosphate buffer gradient, few viruses were observed on the HAp surface. After incubating the dengue viruses that were adsorbed on HAp beads at 37°C and 2°C, the sphericity of the dengue viruses were reduced with an increase in incubation temperature. These results suggested that dengue virus was adsorbed to the HAp surface by electronic interactions and could be eluted by high-salt concentration buffers, which are commonly used in protein purification. Furthermore, virus fusion was thought to occur with increasing temperature, which implied that virus-HAp adhesion was similar to virus-cell adhesion.
Collapse
Affiliation(s)
- Maiko Saito
- R&D Department, PENTAX New Ceramics Division, HOYA Corporation, Tokyo, Japan.
| | | | | |
Collapse
|
18
|
Sakoda Y, Okamatsu M, Isoda N, Yamamoto N, Ozaki K, Umeda Y, Aoyama S, Kida H. Purification of human and avian influenza viruses using cellulose sulfate ester (Cellufine Sulfate) in the process of vaccine production. Microbiol Immunol 2012; 56:490-5. [PMID: 22530951 DOI: 10.1111/j.1348-0421.2012.00468.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Affinity chromatography using sulfated, spherical cellulose beads (Cellufine Sulfate) was assessed for purification of influenza A and influenza B viruses. Recovery rates of viruses eluted from the beads were high for all tested virus strains. This method was also useful for removing chicken egg-derived impurities from allantoic fluids containing influenza viruses; the hemagglutination activity per amount of protein in the eluted sample was significantly higher than that in the applied sample. These results suggest that use of Cellufine Sulfate is a practical method for primary purification of influenza viruses in the process of influenza vaccine production.
Collapse
Affiliation(s)
- Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ng SK. Current cell-based influenza vaccine production technology as pandemic contingency. Hum Vaccin Immunother 2012; 8:267-71. [PMID: 22426381 DOI: 10.4161/hv.18336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Say Kong Ng
- Bioprocessing Technology Institute; Agency for Science, Technology and Research (A*STAR); Singapore.
| |
Collapse
|