1
|
Wang H, Yang M, Wang D, Li K, Wang S, Liu H. Ionic liquid-functionalized poly- N-phenylpyrrole coated on a NiTi alloy substrate for highly efficient solid-phase microextraction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TiO2–NiO composite nanoflakes were in situ grown, followed by electrochemical polymerization of [C4MIM]PF6@PPPy as a fiber coating for solid phase microextraction.
Collapse
Affiliation(s)
- Huiju Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
- Key Lab of Resource Chemistry & Environmental Protection of Qinhai, Xining 810007, China
| | - Minghong Yang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Dongdong Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Kang Li
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Shoujia Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Hailan Liu
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| |
Collapse
|
2
|
Patinha DJS, Wang H, Yuan J, Rocha SM, Silvestre AJD, Marrucho IM. Thin Porous Poly(ionic liquid) Coatings for Enhanced Headspace Solid Phase Microextraction. Polymers (Basel) 2020; 12:polym12091909. [PMID: 32847149 PMCID: PMC7563990 DOI: 10.3390/polym12091909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/11/2023] Open
Abstract
In this contribution, thin poly(ionic liquid) (PIL) coatings with a well-defined pore structure built up from interpolyelectrolyte complexation between a PIL and poly(acrylic acid) (PAA) were successfully used for enhanced solid phase microextraction (SPME). The introduction of porosity with tunable polarity through the highly versatile PIL chemistry clearly boosts the potential of SPME in the detection of compounds at rather low concentrations. This work will inspire researchers to further explore the potential of porous poly(ionic liquid) materials in sensing and separation applications.
Collapse
Affiliation(s)
- David J. S. Patinha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal;
- CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China;
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- Correspondence: (J.Y.); (I.M.M.)
| | - Sílvia M. Rocha
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Isabel M. Marrucho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (J.Y.); (I.M.M.)
| |
Collapse
|
3
|
Tian Y, Feng X, Zhang Y, Yu Q, Wang X, Tian M. Determination of Volatile Water Pollutants Using Cross-Linked Polymeric Ionic Liquid as Solid Phase Micro-Extraction Coatings. Polymers (Basel) 2020; 12:polym12020292. [PMID: 32024255 PMCID: PMC7077427 DOI: 10.3390/polym12020292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 11/25/2022] Open
Abstract
Ionic liquids found a wide application in catalysis and extraction due to their unique properties. Herein, ethylene glycol dimethacrylate as the cross-linker and 1-vinyl-3- butylimidazolium tetrafluoroborate as functional monomer via thermally initiated free-radical polymerization was prepared as a novel copolymer solid phase micro-extraction (SPME) coating. A surface modified stainless-steel wire was implemented as the substrate. Factors affecting the extraction performances of the copolymer, including the molar ratio of monomers to cross-linkers, the amount of porogen agent, and polymerization time were evaluated and optimized. To evaluate the extraction performance, five commonly seen polycyclic aromatic hydrocarbons (PAHs) were taken as the analytical targets. The potential factors affecting extraction efficiency were optimized. The as-prepared SPME device, coupled with gas chromatography, was successfully applied for the determination of PAHs in water samples. The wide linear range, low detection limit, good reproducibility, selectivity, and excellent thermal stability indicate the promising application of the newly developed SPME fiber in environmental monitoring as well as in other samples having complex matrices.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China;
| | - Xilan Feng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (X.F.); (Y.Z.); (M.T.)
| | - Yuping Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (X.F.); (Y.Z.); (M.T.)
| | - Quan Yu
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.Y.); (X.W.); Tel.: +86-755-2603-5201 (Q.Y.); +86-755-2603-6618 (X.W.)
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.Y.); (X.W.); Tel.: +86-755-2603-5201 (Q.Y.); +86-755-2603-6618 (X.W.)
| | - Mengkui Tian
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China; (X.F.); (Y.Z.); (M.T.)
| |
Collapse
|
4
|
|
5
|
Patinha DJ, Nellepalli P, Vijayakrishna K, Silvestre AJ, Marrucho IM. Poly(ionic liquid) embedded particles as efficient solid phase microextraction phases of polar and aromatic analytes. Talanta 2019; 198:193-199. [DOI: 10.1016/j.talanta.2019.01.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
|
6
|
Preparation of ionic liquid hybrid melamine-based covalent organic polymer functionalized polymer monolithic material for the preconcentration of synthetic phenolic antioxidants. J Chromatogr A 2018; 1566:23-31. [DOI: 10.1016/j.chroma.2018.06.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
|
7
|
Feng J, Wang X, Tian Y, Luo C, Sun M. Basalt fibers grafted with a poly(ionic liquids) coating for in-tube solid-phase microextraction. J Sep Sci 2018; 41:3267-3274. [DOI: 10.1002/jssc.201800477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
8
|
Patinha DJ, Pothanagandhi N, Vijayakrishna K, Silvestre AJ, Marrucho IM. Layer-by-layer coated imidazolium – Styrene copolymers fibers for improved headspace-solid phase microextraction analysis of aromatic compounds. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Expanding the Applicability of Poly(Ionic Liquids) in Solid Phase Microextraction: Pyrrolidinium Coatings. MATERIALS 2017; 10:ma10091094. [PMID: 28927003 PMCID: PMC5615748 DOI: 10.3390/ma10091094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
Abstract
Crosslinked pyrrolidinium-based poly(ionic liquids) (Pyrr-PILs) were synthesized through a fast, simple, and solventless photopolymerization scheme, and tested as solid phase microextraction (SPME) sorbents. A series of Pyrr-PILs bearing three different alkyl side chain lengths with two, eight, and fourteen carbons was prepared, characterized, and homogeneously coated on a steel wire by using a very simple procedure. The resulting coatings showed a high thermal stability, with decomposition temperatures above 350 °C, excellent film stability, and lifetime of over 100 injections. The performance of these PIL-based SPME fibers was evaluated using a mixture of eleven organic compounds with different molar volumes and chemical functionalities (alcohols, ketones, and monoterpenes). The Pyrr-PIL fibers were obtained as dense film coatings, with 67 μm thickness, with an overall sorption increase of 90% and 55% as compared to commercial fibers of Polyacrylate (85 μm) (PA85) and Polydimethylsiloxane (7 μm) (PDMS7) coatings, respectively. A urine sample doped with the sample mixture was used to study the matrix effect and establish relative recoveries, which ranged from 60.2% to 104.1%.
Collapse
|
10
|
Lucena R, Cárdenas S. Ionic Liquids in Sample Preparation. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Li L, Wu M, Feng Y, Zhao F, Zeng B. Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols. Anal Chim Acta 2016; 948:48-54. [PMID: 27871609 DOI: 10.1016/j.aca.2016.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/26/2016] [Accepted: 11/04/2016] [Indexed: 12/25/2022]
Abstract
In this work, ionic liquid (IL, i.e. 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate), carboxyl multiwall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO) were used to prepare three-dimensional porous material (MWCNTs-rGO-IL) by one-step self-assembly, then it was co-electrodeposited with polyaniline (PANI) on stainless steel wires by cyclic voltammetry. The resulting coating (PANI-MWCNTs-rGO-IL) was characterized by using FT-IR and scanning electron microscopy etc, and it showed porous structure and had high thermal stability. Furthermore, it was found to be very suitable for the headspace solid-phase microextraction of alcohols (i.e. octanol, nonanol, geraniol, decanol, undecanol and dodecanol). By coupling with gas chromatography, wide linear ranges and low limits of detection (i.e. 2.2-28.3 ng L-1) were obtained for the alcohols. The coating also presented good repeatability and reproducibility; the relative standard deviations for intra-fiber and fiber-to-fiber were less than 5.6% (n = 5) and 7.0% (n = 5) respectively. In addition, the proposed method was successfully applied to the determination of alcohols in tea drinks, and the recoveries for standards added were 85.6-114%.
Collapse
Affiliation(s)
- Lulu Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Mian Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Yingying Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China.
| |
Collapse
|
12
|
Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters. Talanta 2016; 158:125-133. [DOI: 10.1016/j.talanta.2016.05.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/08/2023]
|
13
|
Sun M, Feng J, Bu Y, Luo C. Ionic liquid coated copper wires and tubes for fiber-in-tube solid-phase microextraction. J Chromatogr A 2016; 1458:1-8. [DOI: 10.1016/j.chroma.2016.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
14
|
Shaplov AS, Ponkratov DO, Vygodskii YS. Poly(ionic liquid)s: Synthesis, properties, and application. POLYMER SCIENCE SERIES B 2016. [DOI: 10.1134/s156009041602007x] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Yu H, Merib J, Anderson JL. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography. J Chromatogr A 2016; 1438:10-21. [PMID: 26896916 DOI: 10.1016/j.chroma.2016.02.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/26/2022]
Abstract
Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively.
Collapse
Affiliation(s)
- Honglian Yu
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Josias Merib
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
16
|
Sun M, Bu Y, Feng J, Luo C. Graphene oxide reinforced polymeric ionic liquid monolith solid-phase microextraction sorbent for high-performance liquid chromatography analysis of phenolic compounds in aqueous environmental samples. J Sep Sci 2015; 39:375-82. [PMID: 26519095 DOI: 10.1002/jssc.201500904] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 11/11/2022]
Abstract
A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate monomer and 1,6-di-(3-vinylimidazolium) hexane bihexafluorophosphate cross-linking agent. Coupled to high-performance liquid chromatography, the monolith was used as a solid-phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5-400 μg/L for 3-nitrophenol, 2-nitrophenol, and 2,5-dichlorophenol and 2-400 μg/L for 4-chlorophenol, 2-methylphenol, and 2,4,6-trichlorophenol (R(2) = 0.9973-0.9988). The limits of detection were 0.5 μg/L for 3-nitrophenol and 2-nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5-113%.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Yanan Bu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Juanjuan Feng
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
17
|
Feng J, Sun M, Bu Y, Luo C. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography. Anal Bioanal Chem 2015. [DOI: 10.1007/s00216-015-8888-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Sun M, Feng J, Bu Y, Wang X, Duan H, Luo C. Palladium-coated stainless-steel wire as a solid-phase microextraction fiber. J Sep Sci 2015; 38:1584-90. [DOI: 10.1002/jssc.201401283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Min Sun
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Juanjuan Feng
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Yanan Bu
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Xiaojiao Wang
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Huimi Duan
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan China
| |
Collapse
|
19
|
Feng J, Sun M, Bu Y, Luo C. Facile modification of multi-walled carbon nanotubes–polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange. J Chromatogr A 2015; 1393:8-17. [DOI: 10.1016/j.chroma.2015.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 01/07/2023]
|
20
|
Kang H, Mao Y, Wang X, Zhang Y, Wu J, Wang H. Disposable ionic liquid-coated etched stainless steel fiber for headspace solid-phase microextraction of organophosphorus flame retardants from water samples. RSC Adv 2015. [DOI: 10.1039/c5ra03504j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An ionic liquid-coated etched stainless steel fiber was prepared for solid-phase microextraction of organophosphorus flame retardants from water.
Collapse
Affiliation(s)
- Haiyan Kang
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| | - Yanli Mao
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| | - Xianli Wang
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| | - Yan Zhang
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| | - Junfeng Wu
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| | - Hongqiang Wang
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| |
Collapse
|
21
|
Sun M, Feng J, Bu Y, Duan H, Wang X, Luo C. Development of a solid-phase microextraction fiber by the chemical binding of graphene oxide on a silver-coated stainless-steel wire with an ionic liquid as the crosslinking agent. J Sep Sci 2014; 37:3691-8. [PMID: 25283136 DOI: 10.1002/jssc.201400843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/06/2022]
Abstract
Graphene oxide was bonded onto a silver-coated stainless-steel wire using an ionic liquid as the crosslinking agent by a layer-by-layer strategy. The novel solid-phase microextraction fiber was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and Raman microscopy. A multilayer graphene oxide layer was closely coated onto the supporting substrate. The thickness of the coating was about 4 μm. Coupled with gas chromatography, the fiber was evaluated using five polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, 1,2-benzophenanthrene, and benzo(a)pyrene) as model analytes in direct-immersion mode. The main conditions (extraction time, extraction temperature, ionic strength, and desorption time) were optimized by a factor-by-factor optimization. The as-established method exhibited a wide linearity range (0.5-200 μg/L) and low limits of determination (0.05-0.10 μg/L). It was applied to analyze environmental water samples of rain and river water. Three kinds of the model analytes were quantified and the recoveries of samples spiked at 10 μg/L were in the range of 92.3-120 and 93.8-115%, respectively. The obtained results indicated the fiber was efficient for solid-phase microextraction analysis.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | | | | | | | | | | |
Collapse
|
22
|
Graphene coating bonded onto stainless steel wire as a solid-phase microextraction fiber. Talanta 2014; 134:200-205. [PMID: 25618658 DOI: 10.1016/j.talanta.2014.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 11/24/2022]
Abstract
A graphene coating bonded onto stainless steel wire was fabricated and investigated as a solid-phase microextraction fiber. The coating was characterized by scanning electron microscopy and energy-dispersive X-ray spectrometer. The coating with rough and crinkled structure was about 1 μm. These characteristics were helpful for promoting extraction. Using five n-alkanes (n-undecane, n-dodecane, n-tridecane, n-tetradecane and n-hexadecane) as analytes, the fiber was evaluated in direct-immersion mode by coupling with gas chromatography (GC). Through optimizing extraction and desorption conditions, a sensitive SPME-GC analytical method was established. SPME-GC method provided wide linearity range (0.2-150 μg L(-1)) and low limits of determination (0.05-0.5 μg L(-1)). It was applied to analyze rain water and a soil sample, and analytes were quantified in the range of 0.85-1.96 μg L(-1) and 0.09-3.34 μg g(-1), respectively. The recoveries of samples spiked at 10 μg L(-1) were in the range of 90.1-120% and 80.6-94.2%, respectively. The fiber also exhibited high thermal and chemical stability, due to the covalent bonds between graphene coating and wire, and the natural resistance of graphene for thermal, acid and basic conditions.
Collapse
|
23
|
Dicationic imidazolium ionic liquid modified silica as a novel reversed-phase/anion-exchange mixed-mode stationary phase for high-performance liquid chromatography. J Sep Sci 2014; 37:2153-9. [DOI: 10.1002/jssc.201400176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 11/07/2022]
|
24
|
Multiwalled carbon nanotubes-doped polymeric ionic liquids coating for multiple headspace solid-phase microextraction. Talanta 2014; 123:18-24. [DOI: 10.1016/j.talanta.2014.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 11/23/2022]
|
25
|
|
26
|
Cai MQ, Wei XQ, Du CH, Ma XM, Jin MC. Novel amphiphilic polymeric ionic liquid-solid phase micro-extraction membrane for the preconcentration of aniline as degradation product of azo dye Orange G under sonication by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2014; 1349:24-9. [PMID: 24857038 DOI: 10.1016/j.chroma.2014.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
A novel amphiphilic polymeric ionic liquid membrane containing a hydrophilic bromide anion and a hydrophobic carbonyl group was synthesized in dimethylformamide (DMF) systems using the ionic liquid 1-butyl-3-vinylimidazolium bromide (BVImBr) and the methylmethacrylate (MMA) as monomers. The prepared amphiphilic ploy-methylmethacrylate-1-butyl-3-vinylimidazolium bromide (MMA-BVImBr) was characterized by a scanning electron microscope and an infrared spectrum instrument. The results of solid-phase micro-extraction membrane (SPMM) experiments showed that the adsorption capacity of membrane was about 0.76μgμg(-1) for aniline. Based on this, a sensitive method for the determination of trace aniline, as a degradation product of azo dye Orange G under sonication, was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The calibration curve showed a good linearity ranging from 0.5 to 10.0μgL(-1) with a correlation coefficient value of 0.9998. The limit of quantification was 0.5μgL(-1). The recoveries ranged from 90.6% to 96.1%. The intra- and inter-day relative standard deviations were less than 8.3% and 10.9%. The developed SPMM-LC-MS/MS method was used successfully for preconcentration of trace aniline produced during the sonication of Orange G solution.
Collapse
Affiliation(s)
- Mei-Qiang Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xiao-Qing Wei
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chun-Hui Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xu-Ming Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mi-Cong Jin
- Zhejiang Provincial Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| |
Collapse
|
27
|
Sun M, Feng J, Luo C, Liu X, Jiang S. Quinolinium ionic liquid-modified silica as a novel stationary phase for high-performance liquid chromatography. Anal Bioanal Chem 2014; 406:2651-8. [DOI: 10.1007/s00216-014-7680-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/06/2014] [Accepted: 02/05/2014] [Indexed: 11/30/2022]
|
28
|
Zhang G, Li Z, Zang X, Wang C, Wang Z. Solid-phase microextraction with a graphene-composite-coated fiber coupled with GC for the determination of some halogenated aromatic hydrocarbons in water samples. J Sep Sci 2014; 37:440-6. [DOI: 10.1002/jssc.201301183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Guijiang Zhang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Zhi Li
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Xiaohuan Zang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Chun Wang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| | - Zhi Wang
- Department of Chemistry; College of Science; Agricultural University of Hebei; Baoding China
| |
Collapse
|
29
|
Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 2013; 86:262-85. [PMID: 24205989 DOI: 10.1021/ac4035554] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tien D Ho
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|
30
|
Jia J, Liang X, Wang L, Guo Y, Liu X, Jiang S. Nanoporous array anodic titanium-supported co-polymeric ionic liquids as high performance solid-phase microextraction sorbents for hydrogen bonding compounds. J Chromatogr A 2013; 1320:1-9. [DOI: 10.1016/j.chroma.2013.10.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/27/2022]
|
31
|
Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J Chromatogr A 2013; 1321:1-13. [DOI: 10.1016/j.chroma.2013.10.030] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/19/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
|
32
|
Song XY, Shi YP, Chen J. Carbon nanotubes reinforced hollow fiber solid phase microextraction for the determination of strychnine and brucine in urine. Talanta 2013; 116:188-94. [DOI: 10.1016/j.talanta.2013.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/09/2013] [Accepted: 05/11/2013] [Indexed: 11/24/2022]
|
33
|
He Z, Liu D, Zhou Z, Wang P. Ionic-liquid-functionalized magnetic particles as an adsorbent for the magnetic SPE of sulfonylurea herbicides in environmental water samples. J Sep Sci 2013; 36:3226-33. [DOI: 10.1002/jssc.201300390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/30/2013] [Accepted: 07/19/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Zeying He
- Agro-Environmental Protection Institute; Ministry of Agriculture; Tianjin P. R. China
- Department of Applied Chemistry; China Agricultural University; Beijing P. R. China
| | - Donghui Liu
- Department of Applied Chemistry; China Agricultural University; Beijing P. R. China
| | - Zhiqiang Zhou
- Department of Applied Chemistry; China Agricultural University; Beijing P. R. China
| | - Peng Wang
- Department of Applied Chemistry; China Agricultural University; Beijing P. R. China
| |
Collapse
|
34
|
|
35
|
Gao Z, Deng Y, Hu X, Yang S, Sun C, He H. Determination of organophosphate esters in water samples using an ionic liquid-based sol–gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector. J Chromatogr A 2013; 1300:141-50. [DOI: 10.1016/j.chroma.2013.02.089] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/26/2022]
|
36
|
|
37
|
Feng J, Qiu H, Liu X, Jiang S, Feng J. The development of solid-phase microextraction fibers with metal wires as supporting substrates. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Sun M, Feng J, Qiu H, Fan L, Li X, Luo C. CNT-TiO2 coating bonded onto stainless steel wire as a novel solid-phase microextraction fiber. Talanta 2013; 114:60-5. [PMID: 23953442 DOI: 10.1016/j.talanta.2013.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 11/17/2022]
Abstract
A novel solid-phase microextraction (SPME) fiber based on carbon nanotubes-titanium oxide (CNT-TiO2) composite coating bonded onto stainless steel wire was prepared via electroless plating and sol-gel techniques. The SPME coating was characterized by scanning electron microscopy and Raman microscopy. Coupled to gas chromatography (GC), the fiber was investigated with seven polycyclic aromatic hydrocarbons (PAHs) in direct-immersion mode. The SPME-GC analytical method was evaluated under optimized extraction conditions. Compared with other reports, higher sensitivity (LODs, 0.002-0.004 μg L(-1)) and better linear range (0.01-100 and 0.01-200 μg L(-1)) were obtained by the proposed method. The fiber exhibited high thermal stability to 300 °C and excellent durability in HCl and NaOH solutions. The as-established SPME-GC method was used to analyze the real water samples and satisfactory results were obtained.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Feng J, Sun M, Xu L, Wang S, Liu X, Jiang S. Novel double-confined polymeric ionic liquids as sorbents for solid-phase microextraction with enhanced stability and durability in high-ionic-strength solution. J Chromatogr A 2012; 1268:16-21. [DOI: 10.1016/j.chroma.2012.10.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 11/16/2022]
|
41
|
Ho TD, Yu H, Cole WTS, Anderson JL. Ultraviolet Photoinitiated On-Fiber Copolymerization of Ionic Liquid Sorbent Coatings for Headspace and Direct Immersion Solid-Phase Microextraction. Anal Chem 2012; 84:9520-8. [DOI: 10.1021/ac302316c] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tien D. Ho
- Department of Chemistry, The University of Toledo, Toledo, Ohio 43606, United
States
| | - Honglian Yu
- Department of Chemistry, The University of Toledo, Toledo, Ohio 43606, United
States
| | - William T. S. Cole
- Department of Chemistry, The University of Toledo, Toledo, Ohio 43606, United
States
| | - Jared L. Anderson
- Department of Chemistry, The University of Toledo, Toledo, Ohio 43606, United
States
- School of Green
Chemistry and
Engineering, The University of Toledo,
Toledo, Ohio 43606, United States
| |
Collapse
|