1
|
Ren J, Xiong H, Huang C, Ji F, Jia L. An engineered peptide tag-specific nanobody for immunoaffinity chromatography application enabling efficient product recovery at mild conditions. J Chromatogr A 2022; 1676:463274. [DOI: 10.1016/j.chroma.2022.463274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
2
|
Razdan S, Adler J, Barua D, Barua S. Multifunctional Biofilter to Effectively Remove Toxins. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities. J Chromatogr A 2020; 1625:461237. [DOI: 10.1016/j.chroma.2020.461237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022]
|
4
|
Reese H, Bordelon T, Odeh F, Broussard A, Kormos C, Murphy A, Shanahan C, Menegatti S. Purification of animal immunoglobulin G (IgG) using peptoid affinity ligands. Biotechnol Prog 2020; 36:e2994. [DOI: 10.1002/btpr.2994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Hannah Reese
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | | | - Fuad Odeh
- LigaTrap LLC Raleigh North Carolina USA
| | | | | | | | - Calvin Shanahan
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
- Biomanufacturing Training and Education Center (BTEC)North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
5
|
Bakhshpour M, Topcu AA, Bereli N, Alkan H, Denizli A. Poly(Hydroxyethyl Methacrylate) Immunoaffinity Cryogel Column for the Purification of Human Immunoglobulin M. Gels 2020; 6:E4. [PMID: 32013072 PMCID: PMC7151037 DOI: 10.3390/gels6010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Human immunoglobulin M (hIgM) antibodies are considered as hopeful tools for diseases therapy. Therefore, chromatography approaches are used to purify hIgM with a single step. In this study, we prepared a poly(hydroxyethyl methacrylate) based immunoaffinity p(HEMA-I) cryogel column by using cyanamide to immobilize antihuman immunoglobulin on the p(HEMA) cryogel for purification of hIgM in aqueous solution and artificial human plasma. The characterization of the p(HEMA) cryogel column was performed by using a scanning electron microscope (SEM), micro-computerized tomography (µ-CT), Fourier transform infrared spectroscopy (FTIR), swelling degree and macro-porosity. Further, the optimizations of various parameters were performed such as, pH, ionic strength, temperature and concentration of hIgM in aqueous solutions. In addition, the Langmuir adsorption model was supported by experimental results. Maximum adsorbed amount of hIgM corresponded to 11.1 mg/g at pH 5.75 [morpholino ethanesulfonic acid (MES buffer)]. Our results indicated that the p(HEMA-I) cryogel column can be reused at least 10 times without significant loss in adsorption capacity. As a natural source, artificial human plasma was selected for hIgM adsorption and the purity of hIgM was evaluated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
Collapse
Affiliation(s)
- Monireh Bakhshpour
- Department of Chemistry, Biochemistry Division, Hacettepe University, 06800 Ankara, Turkey; (M.B.); (N.B.)
| | - Aykut Arif Topcu
- Department of Chemistry, Aksaray University, 68100 Aksaray, Turkey;
| | - Nilay Bereli
- Department of Chemistry, Biochemistry Division, Hacettepe University, 06800 Ankara, Turkey; (M.B.); (N.B.)
| | - Huseyin Alkan
- Department of Chemistry, Dicle University, 21280 Diyarbakır, Turkey;
| | - Adil Denizli
- Department of Chemistry, Biochemistry Division, Hacettepe University, 06800 Ankara, Turkey; (M.B.); (N.B.)
| |
Collapse
|
6
|
Matos MJB, Pina AS, Roque ACA. Rational design of affinity ligands for bioseparation. J Chromatogr A 2020; 1619:460871. [PMID: 32044126 DOI: 10.1016/j.chroma.2020.460871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022]
Abstract
Affinity adsorbents have been the cornerstone in protein purification. The selective nature of the molecular recognition interactions established between an affinity ligands and its target provide the basis for efficient capture and isolation of proteins. The plethora of affinity adsorbents available in the market reflects the importance of affinity chromatography in the bioseparation industry. Ligand discovery relies on the implementation of rational design techniques, which provides the foundation for the engineering of novel affinity ligands. The main goal for the design of affinity ligands is to discover or improve functionality, such as increased stability or selectivity. However, the methodologies must adapt to the current needs, namely to the number and diversity of biologicals being developed, and the availability of new tools for big data analysis and artificial intelligence. In this review, we offer an overview on the development of affinity ligands for bioseparation, including the evolution of rational design techniques, dating back to the years of early discovery up to the current and future trends in the field.
Collapse
Affiliation(s)
- Manuel J B Matos
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana S Pina
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - A C A Roque
- UCIBIO, Chemistry Department, School of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
7
|
Chromatographic assay to probe the binding energy and mechanisms of homologous proteins to surface-bound ligands. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121927. [DOI: 10.1016/j.jchromb.2019.121927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
|
8
|
Reese H, Bordelon T, Shanahan C, Crapanzano M, Sly J, Menegatti S. Novel peptoid-based adsorbents for purifying IgM and IgG from polyclonal and recombinant sources. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1137:121909. [DOI: 10.1016/j.jchromb.2019.121909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
|
9
|
Bordelon T, Bobay B, Murphy A, Reese H, Shanahan C, Odeh F, Broussard A, Kormos C, Menegatti S. Translating antibody-binding peptides into peptoid ligands with improved affinity and stability. J Chromatogr A 2019; 1602:284-299. [DOI: 10.1016/j.chroma.2019.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
|
10
|
Razdan S, Wang JC, Barua S. PolyBall: A new adsorbent for the efficient removal of endotoxin from biopharmaceuticals. Sci Rep 2019; 9:8867. [PMID: 31222053 PMCID: PMC6586805 DOI: 10.1038/s41598-019-45402-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/06/2019] [Indexed: 01/20/2023] Open
Abstract
The presence of endotoxin, also known as lipopolysaccharides (LPS), as a side product appears to be a major drawback for the production of certain biomolecules that are essential for research, pharmaceutical, and industrial applications. In the biotechnology industry, gram-negative bacteria (e.g., Escherichia coli) are widely used to produce recombinant products such as proteins, plasmid DNAs and vaccines. These products are contaminated with LPS, which may cause side effects when administered to animals or humans. Purification of LPS often suffers from product loss. For this reason, special attention must be paid when purifying proteins aiming a product as free as possible of LPS with high product recovery. Although there are a number of methods for removing LPS, the question about how LPS removal can be carried out in an efficient and economical way is still one of the most intriguing issues and has no satisfactory solution yet. In this work, polymeric poly-ε-caprolactone (PCL) nanoparticles (NPs) (dP = 780 ± 285 nm) were synthesized at a relatively low cost and demonstrated to possess sufficient binding sites for LPS adsorption and removal with ~100% protein recovery. The PCL NPs removed greater than 90% LPS from protein solutions suspended in water using only one milligram (mg) of NPs, which was equivalent to ~1.5 × 106 endotoxin units (EU) per mg of particle. The LPS removal efficacy increased to a higher level (~100%) when phosphate buffered saline (PBS containing 137 mM NaCl) was used as a protein suspending medium in place of water, reflecting positive effects of increasing ionic strength on LPS binding interactions and adsorption. The results further showed that the PCL NPs not only achieved 100% LPS removal but also ~100% protein recovery for a wide concentration range from 20-1000 μg/ml of protein solutions. The NPs were highly effective in different buffers and pHs. To scale up the process further, PCL NPs were incorporated into a supporting cellulose membrane which promoted LPS adsorption further up to ~100% just by running the LPS-containing water through the membrane under gravity. Its adsorption capacity was 2.8 × 106 mg of PCL NPs, approximately 2 -fold higher than that of NPs alone. This is the first demonstration of endotoxin separation with high protein recovery using polymer NPs and the NP-based portable filters, which provide strong adsorptive interactions for LPS removal from protein solutions. Additional features of these NPs and membranes are biocompatible (environment friendly) recyclable after repeated elution and adsorption with no significant changes in LPS removal efficiencies. The results indicate that PCL NPs are an effective LPS adsorbent in powder and membrane forms, which have great potential to be employed in large-scale applications.
Collapse
Affiliation(s)
- Sidharth Razdan
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Jee-Ching Wang
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
11
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
12
|
Islam T, Naik AD, Hashimoto Y, Menegatti S, Carbonell RG. Optimization of Sequence, Display, and Mode of Operation of IgG-Binding Peptide Ligands to Develop Robust, High-Capacity Affinity Adsorbents That Afford High IgG Product Quality. Int J Mol Sci 2019; 20:E161. [PMID: 30621158 PMCID: PMC6337475 DOI: 10.3390/ijms20010161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
This work presents the use of peptide ligand HWRGWV and its cognate sequences to develop affinity adsorbents that compete with Protein A in terms of binding capacity and quality of the eluted product. First, the peptide ligand was conjugated to crosslinked agarose resins (WorkBeads) at different densities and using different spacer arms. The optimization of ligand density and display resulted in values of static and dynamic binding capacity of 85 mg/mL and 65 mg/mL, respectively. A selected peptide-WorkBeads adsorbent was utilized for purifying Mabs from Chinese Hamster Ovary (CHO) cell culture supernatants. The peptide-WorkBeads adsorbent was found able to withstand sanitization with strong alkaline solutions (0.5 M NaOH). The purity of the eluted product was consistently higher than 95%, with logarithmic removal value (LRV) of 1.5 for host cell proteins (HCPs) and 4.0 for DNA. HCP clearance was significantly improved by adding a post-load washing step with either 0.1 M Tris HCl pH 9 or 1 M NaCl. The cognate peptide of HWRGWV, constructed by replacing arginine (R) with citrulline, further increased the HCP LRV to 2.15. The peptide-based adsorbent also showed a remarkable performance in terms of removal of Mab aggregates; unlike Protein A, in fact, HWRGWV was found to bind only monomeric IgG. Collectively, these results demonstrate the potential of peptide-based adsorbents as alternative to Protein A for the purification of therapeutic antibodies.
Collapse
Affiliation(s)
- Tuhidul Islam
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Amith D Naik
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Yasuhiro Hashimoto
- Department of Research and Development, Fuji Silysia Chemical LTD, Kasugai Aichi 487-0013, Japan.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
13
|
Luo YD, Zhang QL, Yao SJ, Lin DQ. Evaluation of adsorption selectivity of immunoglobulins M, A and G and purification of immunoglobulin M with mixed-mode resins. J Chromatogr A 2018; 1533:77-86. [DOI: 10.1016/j.chroma.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
|
14
|
Affiliation(s)
- Nika Kruljec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Design of protease-resistant peptide ligands for the purification of antibodies from human plasma. J Chromatogr A 2016; 1445:93-104. [DOI: 10.1016/j.chroma.2016.03.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
|
16
|
Huseynli S, Baydemir G, Sarı E, Elkak A, Denizli A. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:77-85. [DOI: 10.1016/j.msec.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/03/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
17
|
Wei Y, Xu J, Zhang L, Fu Y, Xu X. Development of novel small peptide ligands for antibody purification. RSC Adv 2015. [DOI: 10.1039/c5ra07829f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Small peptide ligands which were designed based on the interactions with human immunoglobulin G (IgG) using the molecular simulations, can offer a potential alternative for mAb purification with elution condition at pH 9 and pH 3.
Collapse
Affiliation(s)
- Yuping Wei
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Jiandong Xu
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Liang Zhang
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Yankai Fu
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| | - Xia Xu
- State
- Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
18
|
Application of peptide chromatography for the isolation of antibodies from bovine skim milk, acid whey and colostrum. FOOD AND BIOPRODUCTS PROCESSING 2014. [DOI: 10.1016/j.fbp.2014.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Guan D, Chen Z. Challenges and recent advances in affinity purification of tag-free proteins. Biotechnol Lett 2014; 36:1391-406. [DOI: 10.1007/s10529-014-1509-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/03/2014] [Indexed: 12/19/2022]
|
20
|
The hidden potential of small synthetic molecules and peptides as affinity ligands for bioseparations. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Affinity chromatographic purification of human immunoglobulin M from human B lymphocyte cell culture supernatant. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Liu Z, Gurgel PV, Carbonell RG. Affinity chromatographic purification of human immunoglobulin a from chinese hamster ovary cell culture supernatant. Biotechnol Prog 2012; 29:91-8. [DOI: 10.1002/btpr.1652] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/18/2012] [Indexed: 01/27/2023]
|