1
|
Elshazly M, Leeb B, Brichtova EP, Gisperg F, Klausser R, Vijayakumar S, Lendl B, Voigtmann M, Berkemeyer M, Spadiut O, Kopp J. Investigating the influence of process parameters on the properties and refolding yield of single-chain variable fragment inclusion bodies. J Biotechnol 2025; 405:182-190. [PMID: 40403978 DOI: 10.1016/j.jbiotec.2025.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Ever since the potential of inclusion bodies (IBs) has been recognized, substantial advances have been made towards understanding IB processes and enabling efficient and controlled development strategies. Still, the influence of the chosen upstream processing (USP) strategy on the properties of inclusion bodies (IBs) and their refolding performance remains poorly understood. This work aims to target this challenge by investigating the influence of two chosen USP parameters, namely the specific substrate uptake rate and the temperature during induction, on IB titer, IB properties, namely IB purity, size and secondary protein structure of the IBs, as well as refolding yield of single-chain variable fragment M (scFvM) IBs. Contrary to findings in the literature, USP conditions neither had a statistically significant effect on the aforementioned IB properties nor on the refolding yield, but could clearly alter the IB titer. Our results provide detailed analytical insights on the independence of IB properties from USP conditions for this protein, while increasing the volumetric IB productivity proved feasible through variations in USP parameters. Therefore, titer maximization appears to be the sole optimization strategy for scFvM IBs and these findings may also apply to other target proteins with similar structural properties.
Collapse
Affiliation(s)
- Mohamed Elshazly
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria; Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria
| | - Benedikt Leeb
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria; Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria
| | - Eva Prada Brichtova
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria; Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria
| | - Florian Gisperg
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria; Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria
| | - Robert Klausser
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria; Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria
| | - Shilpa Vijayakumar
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Bernhard Lendl
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Martin Voigtmann
- Boehringer Ingelheim RCV GmbH & Co KG, Biopharma Austria, Development Operations Analytical Development, Vienna, Austria
| | - Matthias Berkemeyer
- Boehringer Ingelheim RCV GmbH & Co KG, Biopharma Austria, Development Operations Analytical Development, Vienna, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria; Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria
| | - Julian Kopp
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria; Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna 1060, Austria.
| |
Collapse
|
2
|
Khezri H, Mostafavi M, Dabirmanesh B, Khajeh K. Peptibodies: Bridging the gap between peptides and antibodies. Int J Biol Macromol 2024; 278:134718. [PMID: 39142490 DOI: 10.1016/j.ijbiomac.2024.134718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Peptides are a very critical class of pharmaceutical compounds that can control several signaling pathways and thereby affect many physiological and biochemical processes. Previous research suggests that both peptides and antibodies may serve as potent tools for research, diagnostics, vaccination, and therapeutics across diverse domains. The distinct attributes of peptides, like their profound tissue penetration, efficient cellular internalization, reduced immunogenicity, and adaptability to chemical modification, underscore their significance in biomedical applications. However, they also possess drawbacks such as lower affinity, poor absorption, low stability to proteolytic digestion, and rapid clearance. The advent of peptibodies is a significant advance that improves the limitations of both peptides and antibodies. Peptibodies, or Peptide-Fc fusions, represent a promising therapeutic modality comprising biologically active peptides fused to an Fc domain. The stability and efficacy of the peptide are enhanced by this fusion strategy, which overcomes some of the inherent limitations. Many peptibodies have been developed to treat conditions like cancer, diabetes, and lupus. Romiplostim and Dulaglutide are the only ones approved by the EMA and FDA, respectively. Given the growing significance of peptibodies in the pharmaceutical landscape, this investigation aims to explain key aspects encompassing the intrinsic properties of peptides, the intricacies of peptibody production, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Hamidhossein Khezri
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdiyeh Mostafavi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Sharma V, Mottafegh A, Joo JU, Kang JH, Wang L, Kim DP. Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals. LAB ON A CHIP 2024; 24:2861-2882. [PMID: 38751338 DOI: 10.1039/d3lc01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biopharmaceuticals have emerged as powerful therapeutic agents, revolutionizing the treatment landscape for various diseases, including cancer, infectious diseases, autoimmune and genetic disorders. These biotherapeutics pave the way for precision medicine with their unique and targeted capabilities. The production of high-quality biologics entails intricate manufacturing processes, including cell culture, fermentation, purification, and formulation, necessitating specialized facilities and expertise. These complex processes are subject to rigorous regulatory oversight to evaluate the safety, efficacy, and quality of biotherapeutics prior to clinical approval. Consequently, these drugs undergo extensive purification unit operations to achieve high purity by effectively removing impurities and contaminants. The field of personalized precision medicine necessitates the development of novel and highly efficient technologies. Microfluidic technology addresses unmet needs by enabling precise and compact separation, allowing rapid, integrated and continuous purification modules. Moreover, the integration of intelligent biomanufacturing systems with miniaturized devices presents an opportunity to significantly enhance the robustness of complex downstream processing of biopharmaceuticals, with the benefits of automation and advanced control. This allows seamless data exchange, real-time monitoring, and synchronization of purification steps, leading to improved process efficiency, data management, and decision-making. Integrating autonomous systems into biopharmaceutical purification ensures adherence to regulatory standards, such as good manufacturing practice (GMP), positioning the industry to effectively address emerging market demands for personalized precision nano-medicines. This perspective review will emphasize on the significance, challenges, and prospects associated with the adoption of continuous, integrated, and intelligent methodologies in small-scale downstream processing for various types of biologics. By utilizing microfluidic technology and intelligent systems, purification processes can be enhanced for increased efficiency, cost-effectiveness, and regulatory compliance, shaping the future of biopharmaceutical production and enabling the development of personalized and targeted therapies.
Collapse
Affiliation(s)
- Vikas Sharma
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Amirreza Mottafegh
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Jeong-Un Joo
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Ji-Ho Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
4
|
Rana S, Ughade S, Kumthekar R, Bhambure R. Chromatography assisted in-vitro refolding and purification of recombinant peptibody: Recombinant Romiplostim a case study. Int J Biol Macromol 2023; 249:126037. [PMID: 37516226 DOI: 10.1016/j.ijbiomac.2023.126037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
In-vitro protein refolding is one of the key rate-limiting unit operations in manufacturing of fusion proteins such as peptibodies expressed using E. coli. Dilution-assisted refolding is the most commonly used industrial practice to achieve the soluble, native functional form of the recombinant protein from the inclusion bodies. This study is focused on developing a chromatography-assisted in-vitro refolding platform to produce the biologically active, native form of recombinant peptibody. Recombinant Romiplostim was selected as a model protein for the study. A plug flow tubular reactor was connected in series with capture step affinity chromatography to achieve simultaneous in-vitro refolding and capture step purification of recombinant Romiplostim. Effect of various critical process parameters like fold dilution, temperature, residence time, and Cysteine: DTT ratio was studied using a central composite based design of experiment strategy to achieve a maximum refolding yield of selected peptibody. Under optimum refolding conditions, the maximum refolding yield of 57.0 ± 1.5 % and a purity of over 79.73 ± 3.4 % were achieved at 25-fold dilution, 15 °C temperature, 6 h residence time with 6 mM and 10 mM of cysteine and DTT, respectively. The formation of native peptibody structure was examined using various orthogonal analytical tools to study the protein's primary, secondary, and tertiary structure. The amino acid sequence for the disulfide-linked peptide was mapped using collision-induced dissociation (CID) to confirm the formation of interchain disulfide bonds between Cys7-Cys7 and Cys10-Cys10 similarly for intra-chain disulfide bonds between Cys42-Cys102, and Cys148-Cys206. The developed protocol here is a valuable tool to identify high-yield scalable refolding conditions for multi-domain proteins involving inter-domain disulfide bonds.
Collapse
Affiliation(s)
- Sunil Rana
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Ughade
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rupali Kumthekar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Bhambure
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Rajendran V, Ponnusamy A, Pushpavanam S, Jayaraman G. Continuous protein refolding and purification by two-stage periodic counter-current chromatography. J Chromatogr A 2023; 1695:463938. [PMID: 37003075 DOI: 10.1016/j.chroma.2023.463938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Matrix-assisted refolding (MAR) has been used as an alternative to conventional dilution-based refolding to improve recovery and reduce specific buffer consumption. Size exclusion chromatography (SEC) has been extensively used for MAR because of its ability to load and refold proteins at high concentrations. However, the SEC-based batch MAR processes have the disadvantages of requiring longer columns for better separation and product dilution due to a high column-to-sample volume ratio. In this work, a modified operational scheme is developed for continuous MAR of L-asparaginase inclusion bodies (IBs) using SEC-based periodic counter-current chromatography (PCC). The volumetric productivity of the modified SEC-PCC process is 6.8-fold higher than the batch SEC process. In addition, the specific buffer consumption decreased by 5-fold compared to the batch process. However, the specific activity of the refolded protein (110-130 IU/mg) was less due to the presence of impurities and additives in the refolding buffer. To address this challenge, a 2-stage process was developed for continuous refolding and purification of IBs using different matrices in sequential PCCs. The performance of the 2-stage process is compared with literature reports on single-stage IMAC-PCC and conventional pulse dilution processes for refolding L-asparaginase IBs. The 2-stage process resulted in a refolded protein with enhanced specific activity (175-190 IU/mg) and a high recovery of 84%. The specific buffer consumption (6.2 mL/mg) was lower than the pulse dilution process and comparable to the single-stage IMAC-PCC. A seamless integration of the two stages would considerably increase the throughput without compromising other parameters. High recovery, throughput, and increased operational flexibility make the 2-stage process an attractive option for protein refolding.
Collapse
Affiliation(s)
- Vivek Rajendran
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India; Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ananthi Ponnusamy
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Pushpavanam
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Guhan Jayaraman
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
6
|
Buscajoni L, Martinetz MC, Berkemeyer M, Brocard C. Refolding in the modern biopharmaceutical industry. Biotechnol Adv 2022; 61:108050. [PMID: 36252795 DOI: 10.1016/j.biotechadv.2022.108050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
Inclusion bodies (IBs) often emerge upon overexpression of recombinant proteins in E. coli. From IBs, refolding is necessary to generate the native protein that can be further purified to obtain pure and active biologicals. This work focusses on refolding as a significant process step during biopharmaceutical manufacturing with an industrial perspective. A theoretical and historical background on protein refolding gives the reader a starting point for further insights into industrial process development. Quality requirements on IBs as starting material for refolding are discussed and further economic and ecological aspects are considered with regards to buffer systems and refolding conditions. A process development roadmap shows the development of a refolding process starting from first exploratory screening rounds to scale-up and implementation in manufacturing plant. Different aspects, with a direct influence on yield, such as the selection of chemicals including pH, ionic strength, additives, etc., and other often neglected aspects, important during scale-up, such as mixing, and gas-fluid interaction, are highlighted with the use of a quality by design (QbD) approach. The benefits of simulation sciences (process simulation and computer fluid dynamics) and process analytical technology (PAT) for seamless process development are emphasized. The work concludes with an outlook on future applications of refolding and highlights open research inquiries.
Collapse
Affiliation(s)
- Luisa Buscajoni
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Michael C Martinetz
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Matthias Berkemeyer
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Cécile Brocard
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| |
Collapse
|
7
|
Zalai D, Kopp J, Kozma B, Küchler M, Herwig C, Kager J. Microbial technologies for biotherapeutics production: Key tools for advanced biopharmaceutical process development and control. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:9-24. [PMID: 34895644 DOI: 10.1016/j.ddtec.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Current trends in the biopharmaceutical market such as the diversification of therapies as well as the increasing time-to-market pressure will trigger the rethinking of bioprocess development and production approaches. Thereby, the importance of development time and manufacturing costs will increase, especially for microbial production. In the present review, we investigate three technological approaches which, to our opinion, will play a key role in the future of biopharmaceutical production. The first cornerstone of process development is the generation and effective utilization of platform knowledge. Building processes on well understood microbial and technological platforms allows to accelerate early-stage bioprocess development and to better condense this knowledge into multi-purpose technologies and applicable mathematical models. Second, the application of verified scale down systems and in silico models for process design and characterization will reduce the required number of large scale batches before dossier submission. Third, the broader availability of mathematical process models and the improvement of process analytical technologies will increase the applicability and acceptance of advanced control and process automation in the manufacturing scale. This will reduce process failure rates and subsequently cost of goods. Along these three aspects we give an overview of recently developed key tools and their potential integration into bioprocess development strategies.
Collapse
Affiliation(s)
- Denes Zalai
- Richter-Helm BioLogics GmbH & Co. KG, Suhrenkamp 59, 22335 Hamburg, Germany.
| | - Julian Kopp
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Bence Kozma
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Michael Küchler
- Richter-Helm BioLogics GmbH & Co. KG, Suhrenkamp 59, 22335 Hamburg, Germany
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria
| | - Julian Kager
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
8
|
Rajendran V, Pushpavanam S, Jayaraman G. Continuous refolding of L-asparaginase inclusion bodies using periodic counter-current chromatography. J Chromatogr A 2021; 1662:462746. [PMID: 34936904 DOI: 10.1016/j.chroma.2021.462746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Chromatography-based refolding is emerging as a promising alternative to dilution-refolding of solubilized inclusion bodies (IBs). The advantages of this matrix-assisted refolding (MAR) lie in its ability to reduce aggregate formation, leading to better recovery of active protein, and enabling refolding at higher protein concentration. However, batch chromatography has the disadvantage of ineffective solvent utilization, under-utilization of resin, and low throughput. In this work, we overcome these challenges by using a 3-column Periodic Counter-current Chromatographic (PCC) system for continuous refolding of IBs, formed during the production of L-asparaginase by recombinant E. coli cultures. Initial experiments were conducted in batch processes using single-column immobilized metal-affinity chromatography. Different gradient operations were designed to improve the protein loading for the single-column, batch-MAR processes. Optimized conditions, based on the batch-MAR experiments, were used for designing the continuous-MAR processes using the PCC system. The continuous-MAR experiments were carried out over 3 cycles (∼ 30 h) in the PCC system. A detailed quantitative comparison based on recovery, throughput, buffer consumption, and resin utilization was made for the three modes of operation: pulse-dilution, single-column batch-MAR, and 3-Column PCC-based continuous-MAR processes. While recovery (73%) and throughput (11 mg/h) were the highest in PCC, specific buffer consumption (6.9 ml/mg) was the least. Also, during PCC operation, resin utilization improved by 92% in comparison to the single-column batch-MAR process. These quantitative comparisons clearly establish the advantages of the continuous-MAR process over the batch-MAR and other conventional refolding techniques.
Collapse
Affiliation(s)
- Vivek Rajendran
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India; Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Pushpavanam
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Guhan Jayaraman
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
9
|
Kopp J, Slouka C, Spadiut O, Herwig C. The Rocky Road From Fed-Batch to Continuous Processing With E. coli. Front Bioeng Biotechnol 2019; 7:328. [PMID: 31824931 PMCID: PMC6880763 DOI: 10.3389/fbioe.2019.00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Escherichia coli still serves as a beloved workhorse for the production of many biopharmaceuticals as it fulfills essential criteria, such as having fast doubling times, exhibiting a low risk of contamination, and being easy to upscale. Most industrial processes in E. coli are carried out in fed-batch mode. However, recent trends show that the biotech industry is moving toward time-independent processing, trying to improve the space-time yield, and especially targeting constant quality attributes. In the 1950s, the term "chemostat" was introduced for the first time by Novick and Szilard, who followed up on the previous work performed by Monod. Chemostat processing resulted in a major hype 10 years after its official introduction. However, enthusiasm decreased as experiments suffered from genetic instabilities and physiology issues. Major improvements in strain engineering and the usage of tunable promotor systems facilitated chemostat processes. In addition, critical process parameters have been identified, and the effects they have on diverse quality attributes are understood in much more depth, thereby easing process control. By pooling the knowledge gained throughout the recent years, new applications, such as parallelization, cascade processing, and population controls, are applied nowadays. However, to control the highly heterogeneous cultivation broth to achieve stable productivity throughout long-term cultivations is still tricky. Within this review, we discuss the current state of E. coli fed-batch process understanding and its tech transfer potential within continuous processing. Furthermore, the achievements in the continuous upstream applications of E. coli and the continuous downstream processing of intracellular proteins will be discussed.
Collapse
Affiliation(s)
- Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna, Austria
| | - Christoph Slouka
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna, Austria
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna, Austria
| |
Collapse
|
10
|
Downstream Processing for Biopharmaceuticals Recovery. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-01881-8_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Reichelt WN, Kaineder A, Brillmann M, Neutsch L, Taschauer A, Lohninger H, Herwig C. High throughput inclusion body sizing: Nano particle tracking analysis. Biotechnol J 2017; 12. [PMID: 28301074 DOI: 10.1002/biot.201600471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
The expression of pharmaceutical relevant proteins in Escherichia coli frequently triggers inclusion body (IB) formation caused by protein aggregation. In the scientific literature, substantial effort has been devoted to the quantification of IB size. However, particle-based methods used up to this point to analyze the physical properties of representative numbers of IBs lack sensitivity and/or orthogonal verification. Using high pressure freezing and automated freeze substitution for transmission electron microscopy (TEM) the cytosolic inclusion body structure was preserved within the cells. TEM imaging in combination with manual grey scale image segmentation allowed the quantification of relative areas covered by the inclusion body within the cytosol. As a high throughput method nano particle tracking analysis (NTA) enables one to derive the diameter of inclusion bodies in cell homogenate based on a measurement of the Brownian motion. The NTA analysis of fixated (glutaraldehyde) and non-fixated IBs suggests that high pressure homogenization annihilates the native physiological shape of IBs. Nevertheless, the ratio of particle counts of non-fixated and fixated samples could potentially serve as factor for particle stickiness. In this contribution, we establish image segmentation of TEM pictures as an orthogonal method to size biologic particles in the cytosol of cells. More importantly, NTA has been established as a particle-based, fast and high throughput method (1000-3000 particles), thus constituting a much more accurate and representative analysis than currently available methods.
Collapse
Affiliation(s)
- Wieland N Reichelt
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Andreas Kaineder
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Markus Brillmann
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Lukas Neutsch
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Alexander Taschauer
- Division of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Hans Lohninger
- Research group electronic media, Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria.,Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
12
|
Sharma AK, Agarwal H, Pathak M, Nigam KD, Rathore AS. Continuous refolding of a biotech therapeutic in a novel Coiled Flow Inverter Reactor. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2015.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Oxidative protein refolding on size exclusion chromatography: From batch single-column to multi-column counter-current continuous processing. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
|
15
|
Faria RP, Rodrigues AE. Instrumental aspects of Simulated Moving Bed chromatography. J Chromatogr A 2015; 1421:82-102. [DOI: 10.1016/j.chroma.2015.08.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022]
|
16
|
Ryś S, Muca R, Kołodziej M, Piątkowski W, Dürauer A, Jungbauer A, Antos D. Design and optimization of protein refolding with crossflow ultrafiltration. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Zakharova GS, Poloznikov AA, Chubar TA, Gazaryan IG, Tishkov VI. High-yield reactivation of anionic tobacco peroxidase overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:85-93. [PMID: 25986322 DOI: 10.1016/j.pep.2015.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Anionic tobacco peroxidase (TOP) is extremely active in chemiluminescence reaction of luminol oxidation without addition of enhancers and more stable than horseradish peroxidase under antibody conjugation conditions. In addition, recombinant TOP (rTOP) produced in Escherichia coli is known to be a perfect direct electron transfer catalyst on electrodes of various origin. These features make the task of development of a high-yield reactivation protocol for rTOP practically important. Previous attempts to reactivate the enzyme from E. coli inclusion bodies were successful, but the reported reactivation yield was only 14%. In this work, we thoroughly screened the refolding conditions for dilution protocol and compared it with gel-filtration chromatography. The impressive reactivation yield in the dilution protocol (85%) was achieved for 8 μg/mL solubilized rTOP protein and the refolding medium containing 0.3 mM oxidized glutathione, 0.05 mM dithiothreitol, 5 mM CaCl2, 5% glycerol in 50 mM Tris-HCl buffer, pH 9.6, with 1 μM hemin added at the 24th hour of incubation. A practically important discovery was a 30-40% increase in the reactivation yield upon delayed addition of hemin. The reactivation yield achieved is one of the highest reported in the literature on protein refolding by dilution. The final yield of purified active non-glycosylated rTOP was ca. 60 mg per L of E. coli culture, close to the yield reported before for tomato and tobacco plants overexpressing glycosylated TOP (60 mg/kg biomass) and much higher than for the previously reported refolding protocol (2.6 mg per L of E. coli culture).
Collapse
Affiliation(s)
- G S Zakharova
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia.
| | - A A Poloznikov
- Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - T A Chubar
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - I G Gazaryan
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - V I Tishkov
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| |
Collapse
|
18
|
Zhang R, Zhang L, Li C, Chen B, Li Q, Fang X, Shen Y. Refolding of Recombinant Histidine-Tagged Catalytic Domain of MMP-13 from Escherichia coli with Ion-Exchange Chromatography for Higher Bioactivity. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2014.917669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ruiying Zhang
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center/Director Key Laboratory of Yulin Desert Plants Resources , Northwest University , Xi'an , P. R. China
| | - Lu Zhang
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center/Director Key Laboratory of Yulin Desert Plants Resources , Northwest University , Xi'an , P. R. China
| | - Cong Li
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center/Director Key Laboratory of Yulin Desert Plants Resources , Northwest University , Xi'an , P. R. China
| | - Bang Chen
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center/Director Key Laboratory of Yulin Desert Plants Resources , Northwest University , Xi'an , P. R. China
| | - Qing Li
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center/Director Key Laboratory of Yulin Desert Plants Resources , Northwest University , Xi'an , P. R. China
| | - Xuexun Fang
- b Key Laboratory for Molecular Enzymology & Engineering of Ministry of Education , Jilin University , Chang Chun , P. R. China
| | - Yehua Shen
- a Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center/Director Key Laboratory of Yulin Desert Plants Resources , Northwest University , Xi'an , P. R. China
| |
Collapse
|
19
|
Rathore AS, Agarwal H, Sharma AK, Pathak M, Muthukumar S. Continuous Processing for Production of Biopharmaceuticals. Prep Biochem Biotechnol 2015; 45:836-49. [DOI: 10.1080/10826068.2014.985834] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Saremirad P, Wood JA, Zhang Y, Ray AK. Oxidative protein refolding on size exclusion chromatography at high loading concentrations: Fundamental studies and mathematical modeling. J Chromatogr A 2014; 1370:147-55. [DOI: 10.1016/j.chroma.2014.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
21
|
|
22
|
Pan S, Zelger M, Jungbauer A, Hahn R. Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor. J Biotechnol 2014; 185:39-50. [PMID: 24950296 DOI: 10.1016/j.jbiotec.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/21/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
An integrated continuous tubular reactor system was developed for processing an autoprotease expressed as inclusion bodies. The inclusion bodies were suspended and fed into the tubular reactor system for continuous dissolving, refolding and precipitation. During refolding, the dissolved autoprotease cleaves itself, separating the fusion tag from the target peptide. Subsequently, the cleaved fusion tag and any uncleaved autoprotease were precipitated out in the precipitation step. The processed exiting solution results in the purified soluble target peptide. Refolding and precipitation yields performed in the tubular reactor were similar to batch reactor and process was stable for at least 20 h. The authenticity of purified peptide was also verified by mass spectroscopy. Productivity (in mg/l/h and mg/h) calculated in the tubular process was twice and 1.5 times of the batch process, respectively. Although it is more complex to setup a tubular than a batch reactor, it offers faster mixing, higher productivity and better integration to other bioprocessing steps. With increasing interest of integrated continuous biomanufacturing, the use of tubular reactors in industrial settings offers clear advantages.
Collapse
Affiliation(s)
- Siqi Pan
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Monika Zelger
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Rainer Hahn
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
23
|
Wellhoefer M, Sprinzl W, Hahn R, Jungbauer A. Continuous processing of recombinant proteins: Integration of refolding and purification using simulated moving bed size-exclusion chromatography with buffer recycling. J Chromatogr A 2014; 1337:48-56. [DOI: 10.1016/j.chroma.2014.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/31/2014] [Accepted: 02/05/2014] [Indexed: 01/23/2023]
|