1
|
Choi H, Soland NE, Moss MR, Liu J, Prestangen RR, Katahira R, Lee SJ, Thorson MR, Freeman CJ, Karp EM. The cell utilized partitioning model as a predictive tool for optimizing counter-current chromatography processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Belova VV. The Prospects for Using Recirculation–Countercurrent Chromatography for Separating Multicomponent Mixtures. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s004057952105002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Belova VV. Computational Studies on Rare-Earth Metal Separation by Recycling Liquid–Liquid Chromatography. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Kostanyan AE. Increasing Efficiency of the Separation of Substance Mixtures by Methods of Liquid–Liquid Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820110088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kostanyan AA, Voshkin AA, Belova VV. Analytical, Preparative, and Industrial-Scale Separation of Substances by Methods of Countercurrent Liquid-Liquid Chromatography. Molecules 2020; 25:E6020. [PMID: 33353256 PMCID: PMC7766798 DOI: 10.3390/molecules25246020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Countercurrent liquid-liquid chromatographic techniques (CCC), similar to solvent extraction, are based on the different distribution of compounds between two immiscible liquids and have been most widely used in natural product separations. Due to its high load capacity, low solvent consumption, the diversity of separation methods, and easy scale-up, CCC provides an attractive tool to obtain pure compounds in the analytical, preparative, and industrial-scale separations. This review focuses on the steady-state and non-steady-state CCC separations ranging from conventional CCC to more novel methods such as different modifications of dual mode, closed-loop recycling, and closed-loop recycling dual modes. The design and modeling of various embodiments of CCC separation processes have been described.
Collapse
Affiliation(s)
| | - Andrey A. Voshkin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskii pr., 119991 Moscow, Russia; (A.A.K.); (V.V.B.)
| | | |
Collapse
|
6
|
Belova VV, Tsareva YV. Extraction of Lanthanide Chlorides in Aqueous-Organic Two-Phase Systems with Salts of Tertiary and Secondary Amines. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2020. [DOI: 10.1134/s0040579520050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Guo Y, Tong S, Zhang K, Yan J. Recent progress in separation prediction of counter-current chromatography. J Sep Sci 2020; 44:6-16. [PMID: 32926765 DOI: 10.1002/jssc.202000473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/11/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022]
Abstract
As a liquid-liquid partition chromatography, counter-current chromatography has advantages in large sample loading capacity without irreversible adsorption, which has been widely applied in separation and purification fields. The main factors, including partition coefficient, two-phase solvent systems, apparatus, and operating parameters greatly affect the separation process of counter-current chromatography. To promote the applications of counter-current chromatography, it is essential to develop theoretical research to master the principles of counter-current chromatographic separations so as to achieve predictions before laborious trials. In this article, recent progress about separation prediction methods are reviewed from a point of the steady and unsteady state of the mass transfer process of counter-current chromatography and its mass transfer characteristics, and then it is divided into three aspects: prediction of partition coefficient, modeling the thermodynamic process of counter-current chromatography, and modeling the dynamic process of counter-current chromatography.
Collapse
Affiliation(s)
- Yuru Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Keqing Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
8
|
Belova VV, Tsareva YV. Interphase Distribution of Lanthanide Nitrates in Aqueous Organic Two-Phase Systems with Amine and Organic Acid Salts. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2020. [DOI: 10.1134/s0040579520040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Belova VV, Martynova MM. Interphase Distribution of Lanthanide Chlorides in Multicomponent Aqueous–Organic Two-Phase Systems Containing DEHPA. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2020. [DOI: 10.1134/s0040579519050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Belova VV, Martynova MM. Interphase Distribution of Lanthanide Salts in Multicomponent Aqueous–Organic Two-Phase Systems. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2019. [DOI: 10.1134/s0040579518050056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Belova VV, Tsareva YV. Calculation Studies of the Separation of Rare-Earth Metals by Countercurrent Liquid–Liquid Chromatography. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2019. [DOI: 10.1134/s004057951905004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Morley R, Minceva M. Operating mode and parameter selection in liquid-liquid chromatography. J Chromatogr A 2019; 1617:460479. [PMID: 31477275 DOI: 10.1016/j.chroma.2019.460479] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022]
Abstract
The presence of a liquid stationary phase in liquid-liquid chromatography (LLC) allows for high versatility of operation as well as adaptability to different sample types and separation tasks. LLC, also known as countercurrent chromatography (CCC) or centrifugal partition chromatography (CPC), offers the user a variety of operating modes, many of which have no direct equivalent in conventional preparative liquid-solid chromatography. These operating modes have the potential to greatly improve LLC separation performance compared to the standard "classical" isocratic batch injection mode, and they often require minimal to no addition of equipment to the standard set-up. However, reports of the use of alternative LLC operating modes make up only a fraction of the literature. This is likely due, at least in part, to the lack of clear guidelines and methods for operating mode and parameter selection, leaving alternative process options to be avoided and underutilized. This review seeks to remedy this by providing a thorough overview of the available LLC operating modes, identifying the key characteristics, advantages and disadvantages, and areas of application of each. Additionally, the equations and short-cut models aiding in operating mode and parameter selection are presented and critiqued, and their notation is unified for clarity. By rendering LLC and its alternative operating modes more accessible to current and prospective users, it is hoped to help expand the application of this technology and support the achievement of its full potential.
Collapse
Affiliation(s)
- Raena Morley
- Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| |
Collapse
|
13
|
Belova VV, Martynova MM, Erastov AA. Extraction of Lanthanide Nitrates in Multicomponent Aqueous-Organic Two-Phase Systems with D2EHPA. RUSS J INORG CHEM+ 2018. [DOI: 10.1134/s0036023618120033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Belova VV. Separation and Concentration of Rare Earths by Recycling Liquid–Liquid Chromatography with Multiple Sample Injection: A Computational Study. RUSS J INORG CHEM+ 2018. [DOI: 10.1134/s0036023618040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kostanyan AE. Non-Steady-State Convective Diffusion in a One-Dimensional Closed Loop. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2018. [DOI: 10.1134/s0040579517060082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Brown L, Earle MJ, Gîlea MA, Plechkova NV, Seddon KR. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology. Top Curr Chem (Cham) 2017; 375:74. [PMID: 28799044 PMCID: PMC5552829 DOI: 10.1007/s41061-017-0159-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022]
Abstract
Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).
Collapse
Affiliation(s)
- Leslie Brown
- AECS-QuikPrep Ltd, 55 Gower Street, London, WC1 6HQ, UK
| | - Martyn J Earle
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
| | - Manuela A Gîlea
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| | - Natalia V Plechkova
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| | - Kenneth R Seddon
- The QUILL Research Centre, School of Chemistry, The Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| |
Collapse
|
17
|
Kostanyan AE. Modeling of preparative closed-loop recycling liquid-liquid chromatography with specified duration of sample loading. J Chromatogr A 2016; 1471:94-101. [DOI: 10.1016/j.chroma.2016.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 11/16/2022]
|
18
|
Kostanyan AE, Erastov AA. Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory. J Chromatogr A 2016; 1462:55-62. [DOI: 10.1016/j.chroma.2016.07.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
19
|
Kostanyan AE. Simple equations to simulate closed-loop recycling liquid–liquid chromatography: Ideal and non-ideal recycling models. J Chromatogr A 2015; 1423:71-8. [DOI: 10.1016/j.chroma.2015.10.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|