1
|
Leite M, Freitas A, Barbosa J, Ramos F. Regulated and Emerging Mycotoxins in Bulk Raw Milk: What Is the Human Risk? Toxins (Basel) 2023; 15:605. [PMID: 37888636 PMCID: PMC10610745 DOI: 10.3390/toxins15100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Mycotoxins are abiotic hazards whose contamination occurs at the pre- and post-harvest stages of the maize value chain, with animal exposure through contaminated feed leading to their excretion into milk. Currently, only aflatoxin M1 is regulated in milk products. Since feed materials and complete feed present a multi-mycotoxin composition and are the main mycotoxin source into milk, it is important to recognize the occurrence of multiple toxins and their co-occurrence in this highly consumed food product. The aim of this study was to determine the content of regulated and emerging mycotoxins in milk samples, which allowed for evaluating the occurrence and co-occurrence patterns of different mycotoxins known to contaminate feed materials and complete animal feed. Human exposure considering the occurrence patterns obtained was also estimated. Aflatoxins, fumonisins, zearalenone, and emerging mycotoxins were among the mycotoxins found to be present in the 100 samples analyzed. Concentrations ranged from 0.006 to 16.3 μg L-1, with no sample exceeding the AFM1 maximum level. Though several mycotoxins were detected, no exceeding values were observed considering the TDI or PMTDI. It can be concluded that the observed exposure does not pose a health risk to milk consumers, though it is important to recognize vulnerable age groups.
Collapse
Affiliation(s)
- Marta Leite
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Jorge Barbosa
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| |
Collapse
|
2
|
Muñoz-Solano B, González-Peñas E. Biomonitoring of 19 Mycotoxins in Plasma from Food-Producing Animals (Cattle, Poultry, Pigs, and Sheep). Toxins (Basel) 2023; 15:toxins15040295. [PMID: 37104233 PMCID: PMC10144229 DOI: 10.3390/toxins15040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are of great concern in relation to food safety. When animals are exposed to them, health problems, economic losses in farms and related industries, and the carryover of these compounds to animal-derived foods can occur. Therefore, control of animal exposure is of great importance. This control may be carried out by analyzing raw material and/or feed or through the analysis of biomarkers of exposure in biological matrixes. This second approach has been chosen in the present study. Firstly, a methodology capable of analyzing mycotoxins and some derivatives (AFB1, OTA, ZEA, DON, 3- and 15-ADON, DOM-1, T-2, HT-2, AFM1, STER, NEO, DAS, FUS-X, AFB2, AFG1, AFG2, OTB, and NIV) by LC-MS/MS in human plasma, has been revalidated to be applied in animal plasma. Secondly, this methodology was used in 80 plasma samples obtained from animals dedicated to food production: cattle, pigs, poultry, and sheep (20 samples of each), with and without being treated with a mixture of β-glucuronidase-arylsulfatase to determine possible glucuronide and sulfate conjugates. Without enzymatic treatment, no mycotoxin was detected in any of the samples. Only one sample from poultry presented levels of DON and 3- and 15-ADON. With enzymatic treatment, only DON (1 sample) and STER were detected. The prevalence of STER was 100% of the samples, without significant differences among the four species; however, the prevalence and levels of this mycotoxin in the previously analyzed feed were low. This could be explained by the contamination of the farm environment. Animal biomonitoring can be a useful tool to assess animal exposure to mycotoxins. However, for these studies to be carried out and to be useful, knowledge must be increased on appropriate biomarkers for each mycotoxin in different animal species. In addition, adequate and validated analytical methods are needed, as well as knowledge of the relationships between the levels found in biological matrices and mycotoxin intake and toxicity.
Collapse
Affiliation(s)
- Borja Muñoz-Solano
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
3
|
FeMOF-based nanostructured platforms for T-2 toxin detection in beer by a “fence-type” aptasensing principle. Anal Bioanal Chem 2022; 414:7999-8008. [DOI: 10.1007/s00216-022-04330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
|
4
|
Salim SA, Sukor R, Ismail MN, Selamat J. Dispersive Liquid-Liquid Microextraction (DLLME) and LC-MS/MS Analysis for Multi-Mycotoxin in Rice Bran: Method Development, Optimization and Validation. Toxins (Basel) 2021; 13:toxins13040280. [PMID: 33920815 PMCID: PMC8071159 DOI: 10.3390/toxins13040280] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Rice bran, a by-product of the rice milling process, has emerged as a functional food and being used in formulation of healthy food and drinks. However, rice bran is often contaminated with numerous mycotoxins. In this study, a method to simultaneous detection of aflatoxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), deoxynivalenol (DON), fumonisins (FB1 and FB2), sterigmatocystin (STG), T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone (ZEA) in rice bran was developed, optimized and validated using dispersive liquid–liquid microextraction (DLLME) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In DLLME, using a solvent mixture of methanol/water (80:20, v/v) as the dispersive solvent and chloroform as the extraction solvent with the addition of 5% salt improved the extraction recoveries (63–120%). The developed method was further optimized using the response surface methodology (RSM) combined with Box–Behnken Design (BBD). Under the optimized experimental conditions, good linearity was obtained with a correlation coefficient (r2) ≥ 0.990 and a limit of detection (LOD) between 0.5 to 50 ng g−1. The recoveries ranged from 70.2% to 99.4% with an RSD below 1.28%. The proposed method was successfully applied to analyze multi-mycotoxin in 24 rice bran samples.
Collapse
Affiliation(s)
- Sofiyatul Akmal Salim
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia;
- Correspondence: (S.A.S.); (R.S.)
| | - Rashidah Sukor
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (S.A.S.); (R.S.)
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia;
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Yang S, Luo Y, Mu L, Yang Y, Yang Y. Risk screening of mycotoxins and their derivatives in dairy products using a stable isotope dilution assay and LC-MS/MS. J Sep Sci 2020; 44:782-792. [PMID: 33275836 DOI: 10.1002/jssc.202000822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
An liquid chromatography-tandem mass spectrometry method coupled with a stable isotope dilution assay was established for the simultaneous detection of 17 mycotoxins and their derivatives (aflatoxins B1 , B2 , G1 , G2 , M1 , and M2 ; fumonisins B1 and B2 ; ochratoxin A; zearalenone; zearalanone; α-zearalanol; α-zearalenol; T-2 toxin; deoxynivalenol; deepoxy-deoxynivalenol; and sterigmatocystin) in milk and dairy products. The mycotoxins were extracted with acidified acetonitrile and the lipids were removed using a Captiva EMR-lipid column. The average recoveries of the target compounds from samples spiked at three different concentrations were 67-102%, and the relative standard deviations of the peak areas were less than 10%. Limits of quantification (S/N = 10) of 0.004-1.25 μg/kg were achieved, which are significantly lower than the maximum levels allowed in various countries and regions for each regulated mycotoxin. Milk and yogurt products from local markets and e-commercial platforms were analyzed using the optimized method. The screening showed that aflatoxin M1 , deoxynivalenol, fumonisins B1 and B2 , and zearalenone could be found in milk and yogurt products, especially those products also containing grains or jujube ingredients, indicating that there is a risk of mycotoxins in dairy products.
Collapse
Affiliation(s)
- Shuai Yang
- China Oil & Foodstuffs Corporation (COFCO) Nutrition and Health Research Institute, Beijing, P. R. China.,Beijing Key Laboratory of Nutrition Health and Food Safety, Beijing, P. R. China.,College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Yunjing Luo
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Lei Mu
- China Oil & Foodstuffs Corporation (COFCO) Nutrition and Health Research Institute, Beijing, P. R. China.,Beijing Key Laboratory of Nutrition Health and Food Safety, Beijing, P. R. China
| | - Youyou Yang
- China Oil & Foodstuffs Corporation (COFCO) Nutrition and Health Research Institute, Beijing, P. R. China.,Beijing Key Laboratory of Nutrition Health and Food Safety, Beijing, P. R. China.,Institute of Animal Science of CAAS, Beijing, P. R. China
| | - Yongtan Yang
- Academy of State Administration of Grain, Beijing, P. R. China
| |
Collapse
|
6
|
Kiseleva M, Chalyy Z, Sedova I, Aksenov I. Stability of Mycotoxins in Individual Stock and Multi-Analyte Standard Solutions. Toxins (Basel) 2020; 12:E94. [PMID: 32019119 PMCID: PMC7076964 DOI: 10.3390/toxins12020094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
Standard solutions of mycotoxins prepared in RP HPLC solvents from neat standards are usually used for analytical method development. Multi-mycotoxin HPLC-MS/MS methods necessitate stability estimation for the wide spectrum of fungal metabolites. The stability of individual diluted stock standard solutions of mycotoxins in RP-HPLC solvents and multi-analyte HPLC-MS/MS calibrants was evaluated under standard storage and analysis conditions. Individual stock standard solutions of aflatoxins, sterigmatocystin, A- and B-trichothecenes, zearalenone and its analogues, ochratoxin A, fumonisins, Alternaria toxins, enniatins and beauvericin, moniliformin, citrinin, mycophenolic, cyclopiazonic acids and citreoviridin were prepared in RP-HPLC solvents and stored at -18 °C for 14 months. UV-spectroscopy was utilized to monitor the stability of analytes, excluding fumonisins. The gradual degradation of α-, β-zearalenol and α-, β-zearalanol in acetonitrile was detected. Aflatoxins and sterigmatocystin, zearalenone, Alternaria toxins, enniatins and beauvericin, citrinin, mycophenolic, cyclopiazonic acids and citreoviridin can be referred to as stable. The concentration of the majority of trichothecenes should be monitored. Diluted multi-mycotoxin standard in water/methanol (50/50 v/v) solutions acidified with 0.1% formic acid proved to be stable in silanized glass at 23 °C exposed to light for at least 75 h (CV≤10%). An unexpected manifestation of MS/MS signal suppression/enhancement was discovered in the course of multi-mycotoxin standard solution stability evaluation.
Collapse
Affiliation(s)
- Mariya Kiseleva
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr., 2/14, 109240 Moscow, Russian; (Z.C.); (I.S.); (I.A.)
| | | | | | | |
Collapse
|
7
|
Development and validation of a methodology based on Captiva EMR-lipid clean-up and LC-MS/MS analysis for the simultaneous determination of mycotoxins in human plasma. Talanta 2020; 206:120193. [DOI: 10.1016/j.talanta.2019.120193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/25/2023]
|
8
|
Qie Z, Shi J, Yan W, Gao Z, Meng W, Xiao R, Wang S. Immunochromatographic assay for T-2 toxin based on luminescent quantum dot beads. RSC Adv 2019; 9:38697-38702. [PMID: 35540212 PMCID: PMC9076097 DOI: 10.1039/c9ra06689f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/14/2019] [Indexed: 11/28/2022] Open
Abstract
A quantum dot bead based immunochromatographic assay (QB-ICA) system was established for T-2 toxin (T-2), which widely occurs in agriculture and could be used as a potential biological warfare agent. After optimization, the dynamic linear detection range of T-2 calculated from a calibration curve was from 0.12 to 0.67 ng mL−1 and the limit of detection (LOD) was 0.08 ng mL−1, which is lower than those of the ICA based on colloidal gold nanoparticles or a fluorescent material or an antibody-based biochip in other reports. The performance and practicability of the established ICA system were validated with a commercial ELISA kit and the two methods were comparable. The proposed QB-ICA for T-2 could be an alternative for rapid, sensitive, and quantitative on-site detection of this toxin in biosafety monitoring in agriculture and for susceptibility testing of the potential release of this biological warfare agent. A quantum dot bead based immunochromatographic assay was established for T-2 toxin with a limit of detection of 0.08 ng mL−1.![]()
Collapse
Affiliation(s)
- Zhiwei Qie
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Jinmiao Shi
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Wenliang Yan
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Zichen Gao
- Center for Diseases Prevention and Control of Rocket Force
- China
| | - Wu Meng
- Center for Diseases Prevention and Control of Rocket Force
- China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| |
Collapse
|
9
|
Cortés-Herrera C, Artavia G, Leiva A, Granados-Chinchilla F. Liquid Chromatography Analysis of Common Nutritional Components, in Feed and Food. Foods 2018; 8:E1. [PMID: 30577557 PMCID: PMC6352167 DOI: 10.3390/foods8010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Food and feed laboratories share several similarities when facing the implementation of liquid-chromatographic analysis. Using the experience acquired over the years, through application chemistry in food and feed research, selected analytes of relevance for both areas were discussed. This review focused on the common obstacles and peculiarities that each analyte offers (during the sample treatment or the chromatographic separation) throughout the implementation of said methods. A brief description of the techniques which we considered to be more pertinent, commonly used to assay such analytes is provided, including approaches using commonly available detectors (especially in starter labs) as well as mass detection. This manuscript consists of three sections: feed analysis (as the start of the food chain); food destined for human consumption determinations (the end of the food chain); and finally, assays shared by either matrices or laboratories. Analytes discussed consist of both those considered undesirable substances, contaminants, additives, and those related to nutritional quality. Our review is comprised of the examination of polyphenols, capsaicinoids, theobromine and caffeine, cholesterol, mycotoxins, antibiotics, amino acids, triphenylmethane dyes, nitrates/nitrites, ethanol soluble carbohydrates/sugars, organic acids, carotenoids, hydro and liposoluble vitamins. All analytes are currently assayed in our laboratories.
Collapse
Affiliation(s)
- Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio 11501-2060, Costa Rica.
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio 11501-2060, Costa Rica.
| | - Astrid Leiva
- Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, Ciudad Universitaria Rodrigo 11501-2060, Costa Rica.
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, Ciudad Universitaria Rodrigo 11501-2060, Costa Rica.
| |
Collapse
|
10
|
Li Y, Sun M, Mao X, You Y, Gao Y, Yang J, Wu Y. Mycotoxins Contaminant in Kelp: A Neglected Dietary Exposure Pathway. Toxins (Basel) 2018; 10:E481. [PMID: 30463254 PMCID: PMC6266055 DOI: 10.3390/toxins10110481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
In order to investigated current occurrence of major mycotoxins in dietary kelp in Shandong Province in Northern China, a reliable, sensitive, and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of the 7 most frequent mycotoxins, including 3-acetoxy deoxynivalenol (3AcDON), 15-acetoxy deoxynivalenol (15AcDON), Deoxynivalenol (DON), Fusarenon-X (F-X), Nivalenol (NIV), T-2 toxin (T-2), and Zearalenone (ZEA). Based on optimized pretreatment and chromatographic and mass spectrometry conditions, these target analytes could be monitored with mean recoveries from 72.59~107.34%, with intra⁻day RSD < 9.21%, inter⁻day RSD < 9.09%, LOD < 5.55 μg kg-1, and LOQ < 18.5 μg kg-1. Approximately 43 kelp samples were detected, 3AcDON/15AcDON ranged from 15.3 to 162.5 μg kg-1 with positive rate of 86% in Shandong Province in Northern China. Considering there were no related investigations about mycotoxin contamination in kelp, the high contamination rate of 3AcDON/15AcDON in kelp showed a neglected mycotoxin exposure pathway, which might lead to high dietary exposure risk to consumers.
Collapse
Affiliation(s)
- Yanshen Li
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Mingxue Sun
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Xin Mao
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yanli You
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yonglin Gao
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Jianrong Yang
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
11
|
He D, Wu Z, Cui B, Xu E, Jin Z. Building a Fluorescent Aptasensor Based on Exonuclease-Assisted Target Recycling Strategy for One-Step Detection of T-2 Toxin. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1392-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Jiang K, Huang Q, Fan K, Wu L, Nie D, Guo W, Wu Y, Han Z. Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chem 2018; 264:218-225. [DOI: 10.1016/j.foodchem.2018.05.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
|
13
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Parent-Massin D, van Egmond H, Altieri A, Colombo P, Horváth Z, Levorato S, Edler L. Risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J 2018; 16:e05367. [PMID: 32626015 PMCID: PMC7009455 DOI: 10.2903/j.efsa.2018.5367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
4,15‐Diacetoxyscirpenol (DAS) is a mycotoxin primarily produced by Fusarium fungi and occurring predominantly in cereal grains. As requested by the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed the risk of DAS to human and animal health related to its presence in food and feed. Very limited information was available on toxicity and on toxicokinetics in experimental and farm animals. Due to the limitations in the available data set, human acute and chronic health‐based guidance values (HBGV) were established based on data obtained in clinical trials of DAS as an anticancer agent (anguidine) after intravenous administration to cancer patients. The CONTAM Panel considered these data as informative for the hazard characterisation of DAS after oral exposure. The main adverse effects after acute and repeated exposure were emesis, with a no‐observed‐adverse‐effect level (NOAEL) of 32 μg DAS/kg body weight (bw), and haematotoxicity, with a NOAEL of 65 μg DAS/kg bw, respectively. An acute reference dose (ARfD) of 3.2 μg DAS/kg bw and a tolerable daily intake (TDI) of 0.65 μg DAS/kg bw were established. Based on over 15,000 occurrence data, the highest acute and chronic dietary exposures were estimated to be 0.8 and 0.49 μg DAS/kg bw per day, respectively, and were not of health concern for humans. The limited information for poultry, pigs and dogs indicated a low risk for these animals at the estimated DAS exposure levels under current feeding practices, with the possible exception of fattening chicken. Assuming similar or lower sensitivity than for poultry, the risk was considered overall low for other farm and companion animal species for which no toxicity data were available. In consideration of the similarities of several trichothecenes and the likelihood of co‐exposure via food and feed, it could be appropriate to perform a cumulative risk assessment for this group of substances.
Collapse
|
14
|
|
15
|
Development of a Novel Immunoaffinity Column for the Determination of Deoxynivalenol and Its Acetylated Derivatives in Cereals. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1211-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Flores-Flores ME, González-Peñas E. Short communication: Analysis of mycotoxins in Spanish milk. J Dairy Sci 2017; 101:113-117. [PMID: 29055539 DOI: 10.3168/jds.2017-13290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022]
Abstract
We surveyed the presence of 22 mycotoxins in 191 Spanish cow milk samples. Mycotoxins could be carried over from diet into animal milk and have toxic effects on human and animal health. The interaction of different mycotoxins may be additive or synergetic. Therefore, surveillance of mycotoxin co-occurrence in milk is recommended. Aflatoxins M1, B1, B2, G1, and G2, ochratoxins A and B, nivalenol, deoxynivalenol, deepoxy-deoxynivalenol, 3- and 15-acetyldeoxynivalenol, diacetoxyscirpenol, neosolaniol, fusarenon X, T-2 and HT-2 toxins, fumonisins B1, B2, and B3, sterigmatocystin, and zearalenone were analyzed. Samples were treated by liquid-liquid extraction with acidified acetonitrile, followed by an acetonitrile-water phase separation using sodium acetate. The analysis was carried out by HPLC coupled to a triple quadrupole mass spectrometer. None of the analyzed mycotoxins had a concentration level higher than their detection limit (0.05-10.1 µg/L). The aflatoxin M1 in the samples never exceeded the level established by the European Union.
Collapse
Affiliation(s)
- Myra Evelyn Flores-Flores
- School of Pharmacy and Nutrition, Department of Organic and Pharmaceutical Chemistry, University of Navarra, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain
| | - Elena González-Peñas
- School of Pharmacy and Nutrition, Department of Organic and Pharmaceutical Chemistry, University of Navarra, C/ Irunlarrea 1, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
17
|
Flores-Flores ME, González-Peñas E. An LC–MS/MS method for multi-mycotoxin quantification in cow milk. Food Chem 2017; 218:378-385. [DOI: 10.1016/j.foodchem.2016.09.101] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|
18
|
Berthiller F, Brera C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2015-2016. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2138] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarises developments in the determination of mycotoxins over a period between mid-2015 and mid-2016. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed liquid chromatography mass spectrometry based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of presented methodologies.
Collapse
Affiliation(s)
- F. Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - C. Brera
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety – GMO and Mycotoxins Unit, Viale Regina Elena 299, 00161 Rome, Italy
| | - M.H. Iha
- Adolfo Lutz Institute of Ribeirão Preto, Nucleous of Chemistry and Bromatology Science, Rua Minas 866, Ribeirão Preto, SP 14085-410, Brazil
| | - R. Krska
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- USDA-ARS-NCAUR, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg, 2440 Geel, Belgium
| | - S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB R3C 3G8, Canada
| |
Collapse
|
19
|
|
20
|
Warth B, Braun D, Ezekiel CN, Turner PC, Degen GH, Marko D. Biomonitoring of Mycotoxins in Human Breast Milk: Current State and Future Perspectives. Chem Res Toxicol 2016; 29:1087-97. [DOI: 10.1021/acs.chemrestox.6b00125] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
| | - Chibundu N. Ezekiel
- Department
of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Nigeria
- Partnership
for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, African Union Commission, Addis Ababa, Ethiopia
| | - Paul C. Turner
- Maryland
Institute for Environmental Health, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Gisela H. Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, D-44139 Dortmund, Germany
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department
of Food Chemistry and Toxicology, Waehringerstraße 38, 1090 Vienna, Austria
| |
Collapse
|