1
|
Shi D, Liao N, Liu H, Gao W, Zhong S, Zheng C, Chen H, Xiao L, Zhu Y, Huang S, Zhang Y, Hu Y, Zheng Y, Ji J, Cheng J. Rapid Analysis of Compounds from Piperis Herba and Piperis Kadsurae Caulis and Their Differences Using High-Resolution Liquid-Mass Spectrometry and Molecular Network Binding Antioxidant Activity. Molecules 2024; 29:439. [PMID: 38257353 PMCID: PMC10821392 DOI: 10.3390/molecules29020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
There is a serious mixing of Piperis Herba and Piperis Kadsurae Caulis in various parts of China due to the similar traits of lianas, and there is a lack of systematic research on the compound and activity evaluation of the two. Likewise, the differences in compounds brought about by the distribution of origin also need to be investigated. In this study, high-resolution liquid-mass spectrometry (UPLC-Q-Zeno-TOF-MS/MS) was used to analyze samples of Piperis Herba from five origins and Piperis Kadsurae Caulis from five origins, with three batches collected from each origin. The compounds were identified based on precise molecular weights, secondary fragments, and an online database combined with node-to-node associations of the molecular network. The t-test was used to screen and analyze the differential compounds between the two. Finally, the preliminary evaluation of antioxidant activity of the two herbs was carried out using DPPH and ABTS free radical scavenging assays. The results showed that a total of 72 compounds were identified and deduced in the two Chinese medicines. These compounds included 54 amide alkaloids and 18 other compounds, such as flavonoid glycosides. The amide alkaloids among them were then classified, and the cleavage pathways in positive ion mode were summarized. Based on the p-value of the t-test, 32 differential compounds were screened out, and it was found that the compounds of Piperis Herba were richer and possessed a broader spectrum of antioxidant activity, thus realizing a multilevel distinction between Piperis Herba and Piperis Kadsurae Caulis. This study provides a preliminary reference for promoting standardization and comprehensive quality research of the resources of Piperis Herba using Piperis Kadsurae Caulis as a reference.
Collapse
Affiliation(s)
- Dezhi Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Nanxi Liao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Hualan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Wufeng Gao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Shaohui Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Chao Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Haijie Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
| | - Lianlian Xiao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Yubo Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Shiwen Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
| | - Yunyu Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Yang Hu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Yunfeng Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Jing Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.S.); (N.L.); (H.L.); (W.G.); (S.Z.); (C.Z.); (H.C.); (L.X.); (Y.Z.); (S.H.); (Y.Z.); (Y.H.); (Y.Z.)
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| |
Collapse
|
2
|
Sun Q, Du B, Wang C, Xu W, Fu Z, Yan Y, Li S, Wang Z, Zhang H. Ultrasound-Assisted Ionic Liquid Solid–Liquid Extraction Coupled with Aqueous Two-Phase Extraction of Naphthoquinone Pigments in Arnebia euchroma (Royle) Johnst. Chromatographia 2019. [DOI: 10.1007/s10337-019-03804-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Zhou C, Sun D, Sun X, Zhu C, Wang Q. Combining Ultrasound and Microwave to Improve the Yield and Quality of Single-Cell Oil from Mortierella isabellina
NTG1−121. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cuixia Zhou
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering; Shandong Agricultural University, Daizong Road No.61; Taian, 271018 China
| | - Dengyue Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering; Shandong Agricultural University, Daizong Road No.61; Taian, 271018 China
| | - Xin Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering; Shandong Agricultural University, Daizong Road No.61; Taian, 271018 China
| | - Chuanhe Zhu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering; Shandong Agricultural University, Daizong Road No.61; Taian, 271018 China
| | - Qun Wang
- Department of Chemical and Biological Engineering, 2114 Sweeney Hall, 618 Bissell Road; Iowa State University; Ames IA, 50011 USA
| |
Collapse
|
5
|
Wei M, Yang L. Determination of orientin in Trollius chinensis using ultrasound-assisted extraction and high performance liquid chromatography: Several often-overlooked sample preparation parameters in an ultrasonic bath. J Chromatogr A 2017; 1530:68-79. [PMID: 29153914 DOI: 10.1016/j.chroma.2017.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
The erratic pressure intensities and cavitation exhibited in an ultrasonic bath pose various during practical application. To achieve the most efficient experimental design, this manuscript aims to discover violently sites that are subject to the effect of slight changes in position on cavitation and ultrasound intensity distributed in the ultrasonic bath. In addition, optimization several often over-looked ultrasound parameters and experimental conditions, are intended to place the reaction vessel properly and operate under suitable experimental conditions to obtain the maximum yield of target analyte. In this study, an investigation of the various ultrasound intensities and cavitation in ultrasonic bath space were conducted with the help of the orientin yield using ultrasound-assisted extraction. Conventional parameters such as the volume fraction of ethanol, liquid-solid ratio, ultrasound irradiation power, time and frequency, and reaction temperature were investigated, all of which affect the extractive yield factors. Also several often over-looked parameters such as the extraction vessel position in the ultrasonic bath base, the distance between the bottom of the extraction vessel and the ultrasonic bath base, the diameter, the shape and the texture of the extraction vessel, height of the liquid medium and the ultrasound propagating medium salt concentration in the ultrasonic bath were tested exhaustively in this study. These results can therefore serve as a guide to optimize the usage of the ultrasonic bath for future applications.
Collapse
Affiliation(s)
- Mengxia Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Lei Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Jia M, Yang J, Sun YK, Bai X, Wu T, Liu ZS, Aisa HA. Improvement of imprinting effect of ionic liquid molecularly imprinted polymers by use of a molecular crowding agent. Anal Bioanal Chem 2017; 410:595-604. [DOI: 10.1007/s00216-017-0760-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/18/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
7
|
Chen F, Zhang Q, Liu J, Gu H, Yang L. An efficient approach for the extraction of orientin and vitexin from Trollius chinensis flowers using ultrasonic circulating technique. ULTRASONICS SONOCHEMISTRY 2017; 37:267-278. [PMID: 28427633 DOI: 10.1016/j.ultsonch.2017.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 06/07/2023]
Abstract
Ultrasonic circulating extraction (UCE) approach was developed for effective extraction of orientin and vitexin from the flowers of Trollius chinensis successfully. In this study, some parameters potentially influencing the yields of orientin and vitexin were systematically investigated and optimized by Plackett-Burman and Box-Behnken design, and the optimum operational conditions obtained were 60% ethanol volume fraction, 1000r/min stirring speed, 30°C temperature, 28min ultrasonic irradiation time, 10mL/g liquid-solid ratio and 738W ultrasonic irradiation power. Satisfactory yields of orientin (6.05±0.19mg/g) and vitexin (0.96±0.03mg/g) were obtained in a relatively shorter extraction time under the derived optimum conditions, compared to other ultrasonic extraction methods and heat extraction methods. The mechanism of UCE procedure was discussed in detail, to illustrate the advantage of UCE in the extraction process. In addition, no degradation of orientin and vitexin and high reproducibility of the developed UCE method were observed under the optimum conditions. The proposed UCE technique with high-capacity and circulation function is a rapid and efficient sample extraction technique, and performs promising in large-scale sample preparation.
Collapse
Affiliation(s)
- Fengli Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qiang Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Junling Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Huiyan Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lei Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|