1
|
Park EY, Minkner R. A systematic approach for scalable purification of virus-like particles. Protein Expr Purif 2025; 228:106664. [PMID: 39828016 DOI: 10.1016/j.pep.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Virus-like particles (VLPs) are increasingly recognized as promising vaccine candidates and drug-delivery platforms because they do not contain genetic materials, mimic viral structures, and possess strong antigenic properties. Various hosts, including microorganisms, yeast, and insect cells, are commonly used for VLP expression. Recently, silkworms have emerged as a significant host for producing VLPs, providing a cost-effective and straightforward approach for large-scale expression. Despite the progress in VLP expression technology, purification methods for VLPs are still in their infancy and often rely on unscalable ultracentrifugation techniques. Moreover, VLP purification represents a substantial portion of the overall production cost, highlighting the urgent need for efficient and scalable downstream processing methods to overcome the current challenges in VLP production. Considering their differing structures and properties, this review systematically summarizes the published results of scalable downstream processes for both enveloped and non-enveloped VLPs. Its aim is to provide a comprehensive overview and significantly contribute to developing future VLP production for pharmaceutical applications, thereby guiding and inspiring further research in this field.
Collapse
Affiliation(s)
- Enoch Y Park
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Robert Minkner
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Lothert K, Harsy YMJ, Endres P, Müller E, Wolff MW. Evaluation of restricted access media for the purification of cell culture-derived Orf viruses. Eng Life Sci 2023; 23:e2300009. [PMID: 37664009 PMCID: PMC10472920 DOI: 10.1002/elsc.202300009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Recently, multimodal chromatography using restricted access media (RAM) for the purification of nanoparticles, such as viruses has regained increasing attention. These chromatography resins combine size exclusion on the particle shell and adsorptive interaction within the core. Accordingly, smaller process-related impurities, for example, DNA and proteins, can be retained, while larger product viruses can pass unhindered. We evaluated a range of currently available RAM, differing in the shells' pore cut-off and the core chemistry, for the purification of a cell culture-derived clarified model virus, namely the Orf virus (ORFV). We examined impurity depletion and product recovery as relevant criteria for the evaluation of column performance, as well as scale-up robustness and regeneration potential for evaluating a multiple use application. The results indicate that some columns, for example, the Capto Core, enable both a high DNA and protein removal, while others, for example, the Monomix Core 60 (MC60), are more suitable for DNA depletion. Furthermore, column regeneration is facilitated by using columns with larger shell pores (5000 vs. 700 kDa) and weaker binding interactions (anion exchange vs. multimodal). According to these findings, the choice of RAM resins should be selected according to the respective feed sample composition and the planned number of application cycles.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences Mittelhessen (THM)GiessenGermany
| | - Yasmina M. J. Harsy
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences Mittelhessen (THM)GiessenGermany
| | - Patrick Endres
- Tosoh Bioscience GmbH, Separations Business Unit ‐ EuropeGriesheimGermany
| | - Egbert Müller
- Tosoh Bioscience GmbH, Separations Business Unit ‐ EuropeGriesheimGermany
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences Mittelhessen (THM)GiessenGermany
| |
Collapse
|
3
|
Fei C, Gao J, Fei C, Ma L, Zhu W, He L, Wu Y, Song S, Li W, Zhou J, Liao G. A flow-through chromatography purification process for Vero cell-derived influenza virus (H7N9). J Virol Methods 2021; 301:114408. [PMID: 34896455 DOI: 10.1016/j.jviromet.2021.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
Immunization is the most effective way to respond to an influenza epidemic. To produce Vero cell-derived influenza vaccines, a more efficient, stable and economical purification process is required. In this study, we purified the H7N9 influenza virus grown in Vero cells that were cultured in a serum-free medium by using a combination of anion exchange chromatography (AEC) and ligand-activated core chromatography (LCC), which avoids the virus capture step. After purification, 99.95 % host cell DNA (hcDNA) (final concentration: 28.69 pg/dose) and 98.87 % host cell protein (HCP) (final concentration: 28.28 ng/dose) were removed. The albumin content was 11.36 ng/dose. All these remnants met the current Chinese Pharmacopoeia and WHO requirements. The final virus recovery rate was 58.74 %, with the concentration of hemagglutinin recorded at 132.12 μg/mL. The flow-through chromatography purification process represents an alternative to the existing processes for cell-derived influenza viruses and might be suitable for the purification of other viruses as well.
Collapse
Affiliation(s)
- ChengRui Fei
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - JingXia Gao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - ChengHua Fei
- Kunming Maternal and Child Health Hospital, 650031, China
| | - Lei Ma
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - WenYong Zhu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - LingYu He
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - YaNan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - ShaoHui Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - WeiDong Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Jian Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| | - GuoYang Liao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
4
|
González-Félix MA, Mejía-Manzano LA, González-Valdez J. Biological nanoparticles: Relevance as novel target drug delivery systems and leading chromatographic isolation approaches. Electrophoresis 2021; 43:109-118. [PMID: 34791693 DOI: 10.1002/elps.202100124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Nanotechnology is one of the most promising technologies of the 21st century, and it is now presenting an enormous impact on target drug delivery. In this context, the recent use of natural vesicle-like nanoparticles such as extracellular vesicles (i.e., exosomes, microvesicles, and apoptotic bodies) and virus-like particles is rendering encouraging results mostly because these delivery systems present cargo versatility, favorable body circulating advantages, biocompatibility, immunogenicity, and the capacity to be modified superficially to increase their affinity to a certain target or to control their entrance to the cell. However, some of the biggest challenges toward their clinical implementation are poorly standardized processing operations due to their inherent heterogeneity and expensive, long-lasting, and difficult to scale isolation procedures that can also affect the stability of the particles. Under these circumstances, chromatographic procedures represent an attractive and favorable alternative to overcome their downstream processing. Moreover, even when standardized chromatographic purification protocols are still in development, great achievements have been made using size exclusion, ionic exchange, hydrophobic interaction, and affinity protocols, mostly because of the correct harnessing of the nanovesicle membrane properties. In this sense, this review focuses on presenting the current understanding on the most promising therapeutic biological nanoparticles and the chromatographic isolation approaches employed in their recovery, providing at the same time recent findings and a general overview of the aspects that might impact the outcome of chromatographic techniques for this application.
Collapse
|
5
|
Chen YL, Huang CT. Establishment of a two-step purification scheme for tag-free recombinant Taiwan native norovirus P and VP1 proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122357. [PMID: 32920339 DOI: 10.1016/j.jchromb.2020.122357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022]
Abstract
The protruding (P) domain of the major capsid protein VP1 of norovirus (NoV) is the crucial element for immune recognition and host receptor binding. The heterologous P protein expressed by Pichia pastoris self-assembles into P particles. However, tag-free NoV protein purification schemes have rarely been reported due to the low isoelectric point of NoV proteins, which leads to highly competitive binding between the target protein and yeast host cell proteins at alkaline pH. In this study, a two-step purification scheme based on surface histidines and the charge on the NoV GII.4 strain P protein was developed. Using HisTrap and ion exchange chromatography, the P protein was directly purified, with a recovery of 28.1% and purity of 82.1%. Similarly, the NoV capsid protein VP1 was also purified using HisTrap and gel filtration chromatography based on native surface histidines and self-assembly ability, with 20% recovery and over 90% purity. Dynamic light scattering and transmission electron microscopy analyses of the purified NoV P revealed that most of these small P particles were triangle-, square- and ring-shaped, with a diameter of approximately 14 nm, and that the purified NoV VP1 self-assembles into particles with a diameter of approximately 47 nm. Both the purified NoV P and VP1 particles retained human histo-blood group antigen-binding ability, as evidenced by a saliva-binding assay.
Collapse
Affiliation(s)
- Yu-Ling Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan.
| |
Collapse
|
6
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
7
|
A Flow-Through Chromatographic Strategy for Hepatitis C Virus-Like Particles Purification. Processes (Basel) 2020. [DOI: 10.3390/pr8010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biopharmaceuticals are currently becoming one of the fastest growing segments of the global pharmaceutical industry, being used in practically all branches of medicine from disease treatment to prevention. Virus-like particles (VLP) hold tremendous potential as a vaccine candidate due to their anticipated immunogenicity and safety profile when compared to inactivated or live attenuated viral vaccines. Nevertheless, there are several challenges yet to be solved in the development and manufacturing of these products, which ultimately can increase time to market. Suchlike virus-based products, the development of a platform approach is often hindered due to diversity and inherent variability of physicochemical properties of the product. In the present work, a flow-through chromatographic purification strategy for hepatitis C VLP expressed using the baculovirus-insect cell expression system was developed. The impact of operational parameters, such as residence time and ionic strength were studied using scaled-down models and their influence on the purification performance was described. The flow-through strategy herein reported made use of radial-flow chromatography columns packed with an anion exchanger and was compared with a bind and elute approach using the same chromatography media. Overall, by selecting the optimal operational setpoints, we were able to achieve higher VLP recoveries in the flow-through process (66% versus 37%) with higher removal of DNA, baculovirus and host-cell protein (92%, 99% and 50% respectively).
Collapse
|
8
|
Fabrication of macroporous microspheres with core-shell structure for negative chromatography purification of virus. J Chromatogr A 2020; 1610:460578. [DOI: 10.1016/j.chroma.2019.460578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
|
9
|
Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20:451-465. [PMID: 31773998 DOI: 10.1080/14712598.2020.1693541] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of novel complex biotherapeutics led to new challenges in biopharmaceutical industry. The potential of these particles has been demonstrated by the approval of several products, in the different fields of gene therapy, oncolytic therapy, and tumor vaccines. However, their manufacturing still presents challenges related to the high dosages and purity required.Areas covered: The main challenges that biopharmaceutical industry faces today and the most recent developments in the manufacturing of different biotherapeutic particles are reported here. Several unit operations and downstream trains to purify virus, virus-like particles and extracellular vesicles are described. Innovations on the different purification steps are also highlighted with an eye on the implementation of continuous and integrated processes.Expert opinion: Manufacturing platforms that consist of a low number of unit operations, with higher-yielding processes and reduced costs will be highly appreciated by the industry. The pipeline of complex therapeutic particles is expanding and there is a clear need for advanced tools and manufacturing capacity. The use of single-use technologies, as well as continuous integrated operations, are gaining ground in the biopharmaceutical industry and should be supported by more accurate and faster analytical methods.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ricardo J S Silva
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Cristina Peixoto
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| |
Collapse
|
10
|
Assessing virus like particles formation and r-HBsAg aggregation during large scale production of recombinant hepatitis B surface antigen from Pichia pastoris. Int J Biol Macromol 2019; 139:697-711. [PMID: 31381908 DOI: 10.1016/j.ijbiomac.2019.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/23/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
Abstract
The aggregation of recombinant proteins in the different stages of purification leads to the loss of a considerable portion of target protein and reduction in the process efficiency. As the active HBsAg used in Hepatitis B vaccine production is in the form of virus-like particle (VLP), therefore the time and stages at which the VLP assembling happened through the process would be important. The aim of this study was to explore the product aggregation during different stages of large scale production of rHBsAg in Pichia pastoris at production unit of the Pasteur Institute of Iran. Dynamic light scattering (DLS) and transmission electron microscopy (TEM), and also size exclusion-high-performance liquid chromatography (SE-HPLC) were carried out on samples taken from each downstream processes steps to determine the rate of VLPs formation as the desired product and the aggregated form at each stage of the purification. Based on the results, it was found that VLPs formation started at the acid precipitation stage and reached up to 80% at the thermal treatment stage. The ultrafiltration, ion exchange chromatography and immunoaffinity chromatography stages were disclosed to have the highest contribution in the formation of VLP (virus like particle) 22 nm.
Collapse
|
11
|
Kimia Z, Hosseini SN, Ashraf Talesh SS, Khatami M, Kavianpour A, Javidanbardan A. A novel application of ion exchange chromatography in recombinant hepatitis B vaccine downstream processing: Improving recombinant HBsAg homogeneity by removing associated aggregates. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1113:20-29. [PMID: 30877983 DOI: 10.1016/j.jchromb.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023]
Abstract
Production of recombinant HBsAg as a main component of the hepatitis B vaccine has already been established in commercial scale. So far, many studies have been performed to optimize the production process of this recombinant vaccine. However, still aggregation and dissociation of rHBsAg virus-like particles (VLPs) are major challenges in downstream processing of this biomedicine. The structural diversity of rHBsAg is dependent on many factors including cell types, molecular characteristics of the expressed recombinant rHBsAg, buffer composition as well as operation condition and specific characteristics of each downstream processing unit. Hence, it is not relatively easy to implement a single strategy to prevent aggregation formation in already established rHBsAg production processes. In this study, we examined the efficacy of weak anion exchange chromatography (IEC)- packed with DEAE Sepharose Fast Flow medium- on isolation of rHBsAg VLPs from aggregated structures. For this purpose, the influence of ionic strength of elution buffer as a key factor was investigated in isolation and recovery of rHBsAg VLPs. The elution buffer with electrical conductivity between 27 and 31 mS/cm showed the best results for removing aggregated rHBsAg based on SEC-HPLC analysis. The results showed that in the selected conductivity range, about 79% of rHBsAg was recovered with purity above 95%. The percentage of rHBsAg VLPs in the recovered sample was between 94% and 97.5% indicating that we could obtain highly homogeneous rHBsAg within the acceptable quality level. The TEM, SDS-PAGE and western blot analysis were also in agreement with our quantitative measurements.
Collapse
Affiliation(s)
- Zeinab Kimia
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Maryam Khatami
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Kavianpour
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Javidanbardan
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Li Z, Wei J, Yang Y, Ma X, Hou B, An W, Hua Z, Zhang J, Li Y, Ma G, Zhang S, Su Z. Strong hydrophobicity enables efficient purification of HBc VLPs displaying various antigen epitopes through hydrophobic interaction chromatography. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Li Z, Wei J, Yang Y, Liu L, Ma G, Zhang S, Su Z. A two-step heat treatment of cell disruption supernatant enables efficient removal of host cell proteins before chromatographic purification of HBc particles. J Chromatogr A 2018; 1581-1582:71-79. [PMID: 30391034 DOI: 10.1016/j.chroma.2018.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022]
Abstract
The thermal stability of HBc particles was systematically investigated for efficient removal of host cell proteins (HCP) by heat treatment before chromatographic step. The HBc particles were found stable up to 80°C for 30 min without any noticeable change in circular dichroism spectra, fluorescence spectra and transmission electron microscope observation. When heating was applied to precipitate the HCP in the cell disruption supernatant of HBc fermentation, the HCP removal effect was more obvious as the temperature went higher. However, a phenomenon was found beyond 70°C where the recovered HBc particles had larger than normal size and molecular weight as observed by dynamic light scattering and multi-angle laser light scattering. Analysis found that the HBc particles possess nanopores which expand with temperature. When the temperature was above 70℃, the pores were large enough for some HCP to penetrate in, but not being able to get out after cooling down. To fully utilize the thermal stability and avoid the interference of HCP entering, a two-step heat treatment strategy was designed. The supernatant was firstly heated up to 60°C for 30 min to precipitate most HCP, then another 30 min at 70°C was used to remove the rest impurities. The two-step heat treatment effectively avoided the HCP entering problem, achieving 85.8% particle recovery and 74.7% purity. With further one-step hydrophobic interaction chromatography, the purity was increased to 99.0% with overall process recovery of 77.7%, considerably higher than those reported in the literature. The same process design was applied to purify three HBc-related products, including OVA-HBc, M2e-HBc and NP-HBc. All recoveries were higher than 50% with purity greater than 97%.
Collapse
Affiliation(s)
- Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiangxue Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanli Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lili Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
14
|
Ng HW, Lee MFX, Chua GK, Gan BK, Tan WS, Ooi CW, Tang SY, Chan ES, Tey BT. Size-selective purification of hepatitis B virus-like particle in flow-through chromatography: Types of ion exchange adsorbent and grafted polymer architecture. J Sep Sci 2018; 41:2119-2129. [PMID: 29427396 DOI: 10.1002/jssc.201700823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/08/2018] [Accepted: 01/26/2018] [Indexed: 11/09/2022]
Abstract
Hepatitis B virus-like particles expressed in Escherichia coli were purified using anion exchange adsorbents grafted with polymer poly(oligo(ethylene glycol) methacrylate) in flow-through chromatography mode. The virus-like particles were selectively excluded, while the relatively smaller sized host cell proteins were absorbed. The exclusion of virus-like particles was governed by the accessibility of binding sites (the size of adsorbents and the charge of grafted dextran chains) as well as the architecture (branch-chain length) of the grafted polymer. The branch-chain length of grafted polymer was altered by changing the type of monomers used. The larger adsorbent (90 μm) had an approximately twofold increase in the flow-through recovery, as compared to the smaller adsorbent (30 μm). Generally, polymer-grafted adsorbents improved the exclusion of the virus-like particles. Overall, the middle branch-chain length polymer grafted on larger adsorbent showed optimal performance at 92% flow-through recovery with a purification factor of 1.53. A comparative study between the adsorbent with dextran grafts and the polymer-grafted adsorbent showed that a better exclusion of virus-like particles was achieved with the absorbent grafted with inert polymer. The grafted polymer was also shown to reduce strong interaction between binding sites and virus-like particles, which preserved the particles' structure.
Collapse
Affiliation(s)
- Hon Wei Ng
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Micky Fu Xiang Lee
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Gek Kee Chua
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
| | - Bee Koon Gan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Eng Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Selangor, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
15
|
Purification of virus-like particles (VLPs) expressed in the silkworm Bombyx mori. Biotechnol Lett 2018; 40:659-666. [PMID: 29383470 DOI: 10.1007/s10529-018-2516-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
Virus-like particles (VLPs) are a promising and developing option for vaccination and gene therapy. They are also interesting as shuttles for drug targeting. Currently, several different gene expression systems are available, among which the silkworm expression system is known for its mass production capacity. However, cost-effective purification with high purity of the target protein is a particular bottleneck for this system. The present review evaluates the advances in the purification of VLPs, especially from silkworm larval hemolymph. Beginning with applicable pre-treatments for VLPs over to chromatography methods and quality control of the purified VLPs. Whereupon the main focus is on the different chromatography approaches for the purification, but the structure of the VLPs and their intended use for humans make also the quality control important. Within this, the stability of the VLPs which has to be considered for the purification is as well discussed.
Collapse
|
16
|
Mojarrad Moghanloo GM, Khatami M, Javidanbardan A, Hosseini SN. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers. Protein Expr Purif 2018; 141:25-31. [DOI: 10.1016/j.pep.2017.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/14/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
|
17
|
Li R, Liang W, Li M, Jiang S, Huang H, Zhang Z, Wang JJ, Awasthi MK. Removal of Cd(II) and Cr(VI) ions by highly cross-linked Thiocarbohydrazide-chitosan gel. Int J Biol Macromol 2017; 104:1072-1081. [PMID: 28684353 DOI: 10.1016/j.ijbiomac.2017.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/07/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
A highly cross-linked Thiocarbohydrazide-modified chitosan (TCCS) gel was synthesized by using formaldehyde as linkage, and was used in removal of Cd(II) and Cr(VI) from aqueous solution. The results showed that TCCS could be used in a wider pH range and had higher adsorption abilities than raw chitosan for Cd(II) and Cr(VI) ions. The maximum adsorption capacities of the synthetic TCCS for two ions reached 81.26 and 144.68mg/g at 298K, respectively. The endothermic adsorption exhibited pseudo-second-order kinetic behavior and the adsorption isotherm could be well described by Langmuir model. The Cd(II) ion adsorption mechanism was dominated by a complexation reaction process, while the Cr(VI) adsorption was governed by a multiple mechanism including electrostatic attraction, reduction and complexation process. TCCS was easy to be regenerated and had great reusability potential in Cd(II) and Cr(VI) ions capture from aqueous solution.
Collapse
Affiliation(s)
- Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Manlin Li
- College of Chemistry and Pharmacy, Shaanxi Key Lab Nat Prod & ChemBiol, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shuncheng Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hui Huang
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA 70803, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jim J Wang
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA 70803, USA
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
18
|
A fast and efficient purification platform for cell-based influenza viruses by flow-through chromatography. Vaccine 2017; 36:3146-3152. [PMID: 28342667 DOI: 10.1016/j.vaccine.2017.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023]
Abstract
Since newly emerging influenza viruses with pandemic potentials occurred in recent years, the demand for producing pandemic influenza vaccines for human use is high. For the development of a quick and efficient vaccine production, we proposed an efficient purification platform from the harvest to the purified bulk for the cell-based influenza vaccine production. This platform based on flow-through chromatography and filtration steps and the process only involves a few purification steps, including depth filtration, inactivation by formaldehyde, microfiltration, ultrafiltration, anion-exchange and ligand-core chromatography and sterile filtration. In addition, in the proposed chromatography steps, no virus capture steps were employed, and the purification results were not affected by the virus strain variation, host cells and culturing systems. The results from different virus strains which produced by Vero or MDCK cells in different culturing systems also obtained 33-46% HA recovery yields by this platform. The overall removal rates of the protein and DNA concentration in the purified bulk were over 96.1% and 99.7%, respectively. The low residual cellular DNA concentrations were obtained ranged from 30 to 130pg per human dose (15µg/dose). All influenza H5N1 purified bulks met the regulatory requirements for human vaccine use.
Collapse
|
19
|
Carmignotto GP, Mourão CA, Bueno SMA. Separation of human Fab fragments by negative chromatography on ω-aminohexyl- and poly(ethyleneimine)-agarose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|