1
|
Lesco KC, Van Wychen S, Deshpande A, Laurens LML, Williams SKR. Multifaceted separations approach for elucidation of the physical and chemical properties of extracellular hydrocolloids. J Chromatogr A 2025; 1753:465980. [PMID: 40311267 DOI: 10.1016/j.chroma.2025.465980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
A multifaceted separations platform that incorporates the strengths of asymmetrical flow field-flow fractionation with multi-detectors (AF4-MD), high performance anion exchange chromatography (HPAEC), and hydrophilic interaction liquid chromatography with mass spectrometry (HILIC-MS) is developed to obtain a more complete picture of the molecular weights (MW), composition, and salt-induced aggregation behavior of extracellular polymeric substances (EPS) produced by the algae Chlorella vulgaris. The absence of a stationary phase makes AF4-MD particularly well suited for characterizing polydisperse hydrocolloid polymers as well as studies that investigate the effect of ionic environments that aligns with the natural environment of C. vulgaris. Fractionation of C. vulgaris EPS revealed three distinct MW populations ranging from 4 × 10⁴ to 3 × 10⁸ Daltons. This exceeds the previously reported MW by three orders of magnitude and reports a previously unknown size subpopulation. The optimized AF4-MD technique was then used to produce two size fractions that were probed using HPAEC and LC-MS. These orthogonal methods uncovered compositional heterogeneity across fractions, with variations in monosaccharides and amino acids. AF4-MD is also well suited for studying the behavior of EPS in the presence of different salts. For each salt studied, e.g., NaNO3, NaCl, and MgCl2, an increase in solution ionic strength results in aggregation as corroborated by a shift to higher MWs. Each salt exhibited distinct effects on EPS aggregation, with NaCl causing the least aggregation and MgCl2 the most. These findings highlight the need for multiple techniques when analyzing complex polymers such as EPS and the benefits of AF4-MD in elucidating complex polymer behaviors in different ionic environments.
Collapse
Affiliation(s)
- Kaitlin C Lesco
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, CO, USA; Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO, USA
| | - Stefanie Van Wychen
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO, USA
| | - Arnav Deshpande
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO, USA
| | - Lieve M L Laurens
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO, USA.
| | | |
Collapse
|
2
|
Chen Z, Wang D, Gu S, Wu N, Wang K, Zhang Y. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. Int J Biol Macromol 2024; 277:134236. [PMID: 39079564 DOI: 10.1016/j.ijbiomac.2024.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Natural polysaccharides exhibit a wide range of biological activities, which are closely related to their structural characteristics, including their molecular weight distribution, size, monosaccharide composition, glycosidic bond types and spatial conformation, etc. Size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4), as two potent separation techniques, both harbor potential for continuous development and enhancement. This manuscript reviewed the fundamental principles and separation applications of SEC and AF4. The structural information and spatial conformation of polysaccharides can be obtained using SEC or AF4 coupled with multiple detectors. In addition, this manuscript elaborates in detail on the shear degradation of samples such as polysaccharides separated by SEC. In addition, the abnormal elution that occurs during the application of the two methods is also discussed. Both SEC and AF4 possess considerable potential for ongoing development and refinement, thereby offering increased possibilities and opportunities for polysaccharide separation and characterization.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saisai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Wang M, Zhang W, Yang L, Li Y, Zheng H, Dou H. Flow field-flow fractionation coupled with multidetector: A robust approach for the separation and characterization of resistant starch. Food Chem X 2024; 22:101267. [PMID: 38468634 PMCID: PMC10926298 DOI: 10.1016/j.fochx.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
The unique properties of resistant starch (RS) have made it applicable in the formulation of a broad range of functional foods. The physicochemical properties of RS play a crucial role in its applications. Recently, flow field-flow fractionation (FlFFF) has attracted increasing interest in the separation and characterization of different categories of RS. In this review, an overview of the theory behind FlFFF is introduced, and the controllable factors, including FlFFF channel design, sample separation conditions, and the choice of detector, are discussed in detail. Furthermore, the applications of FlFFF for the separation and characterization of RS at both the granule and molecule levels are critically reviewed. The aim of this review is to equip readers with a fundamental understanding of the theoretical principle of FlFFF and to highlight the potential for expanding the application of RS through the valuable insights gained from FlFFF coupled with multidetector analysis.
Collapse
Affiliation(s)
- Mu Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Wenhui Zhang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Liu Yang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Yueqiu Li
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Hailiang Zheng
- Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Haiyang Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Moreno Ravelo RC, Gastl M, Becker T. Characterization of molar mass and conformation of relevant (non-)starch polysaccharides in cereal-based beverages. Int J Biol Macromol 2024; 261:129942. [PMID: 38311131 DOI: 10.1016/j.ijbiomac.2024.129942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Arabinoxylans, β-glucans, and dextrins influence the brewing industry's filtration process and product quality. Despite their relevance, only a maximum concentration of β-glucans is recommended. Nevertheless, filtration problems are still present, indicating that although the chemical concentration is essential, other parameters should be investigated. Molar mass and conformation are important polymer physical characteristics often neglected in this industry. Therefore, this research proposes an approach to physically characterize enzymatically isolated beer polysaccharides by asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detector. Based on the obtained molar masses, root-mean-square radius (rrms from MALS), and hydrodynamic radius (rhyd), conformational properties such as apparent density (ρapp) and rrms/rhyd can be calculated based on their molar mass and size. Consequently, the ρapp and rrms/rhyd behavior hints at the different structures within each polysaccharide. The rrms/rhyd 1.2 and high ρapp values on low molar mass dextrins (1-2·105 g/mol) indicate branches, while aggregated structures at high molar masses on arabinoxylans and β-glucans (2·105 -6·106 g/mol) are due to an increase of ρapp and a rrms/rhyd (0.6-1). This methodology provides a new perspective to analyze starch and non-starch polysaccharides in cereal-based beverages since different physical characteristics could influence beer's filtration and sensory characteristics.
Collapse
Affiliation(s)
- Rolando César Moreno Ravelo
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Martina Gastl
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Thomas Becker
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| |
Collapse
|
5
|
Bolinsson H, Söderberg C, Herranz-Trillo F, Wahlgren M, Nilsson L. Realizing the AF4-UV-SAXS on-line coupling on protein and antibodies using high flux synchrotron radiation at the CoSAXS beamline, MAX IV. Anal Bioanal Chem 2023; 415:6237-6246. [PMID: 37572213 PMCID: PMC10558385 DOI: 10.1007/s00216-023-04900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
In this paper, we demonstrate the coupling of synchrotron small angle X-ray scattering (SAXS) to asymmetrical flow-field flow fractionation (AF4) for protein characterization. To the best of our knowledge, this is the first time AF4 is successfully coupled to a synchrotron for on-line measurements on proteins. This coupling has potentially high impact, as it opens the possibility to characterize individual constituents of sensitive and/or complex samples, not suited for separation using other techniques, and for low electron density samples where high X-ray flux is required, e.g., biomolecules and biologics. AF4 fractionates complex samples in native or close to native environment, with low shear forces and system surface area. Many orders of magnitude in size can be fractionated in one measurement, without having to reconfigure the experimental setup. We report AF4 fractionations with correlated UV and statistically adequate SAXS data of bovine serum albumin and a monoclonal antibody and evaluate SAXS data recorded for the two protein systems.
Collapse
Affiliation(s)
- Hans Bolinsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden.
| | - Christopher Söderberg
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, Lund, Sweden
| | | | - Marie Wahlgren
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Lars Nilsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Moreno Ravelo RC, Masch JD, Gastl M, Becker T. Effect of molar mass and size of non-alcoholic beer fractions and their relevance toward palate fullness intensity. Food Res Int 2023; 170:112725. [PMID: 37316000 DOI: 10.1016/j.foodres.2023.112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 06/16/2023]
Abstract
Palate fullness intensity and mouthfeel descriptors are essential sensory characteristics of non-alcoholic beers (NABs). The descriptor's perception might be influenced by the molar distribution of the non-volatile matrix in cereal-based beverages like NABs. However, only limited information is available on the molar mass of different substances in NABs. This study investigated the role of weight average molar mass (Mw) and size of NABs fractions and their relation to sensory perception. Industrialized bottom-fermented NABs (n = 28) from the German market and NABs produced by different methods were used in this study. A trained sensory panel evaluated palate fullness intensity, mouthfeel, and basic taste descriptors (as additional quality parameters). Asymmetric flow field-flow fractionation was used to fractionate NABs, while Mw was determined by multi-angle light scattering and differential refractive index detectors. The NABs were fractionated into three groups containing different substances: proteins, proteins-polyphenol complexes (P-PC) and low molar mass (non-)starch polysaccharides (LN-SP), and high molar mass (non-)starch polysaccharides (HN-SP). The Mw range of proteins was 18.3-41 kDa, P-PC and LN-SP 43-122.6 kDa, and HN-SP 0.40-2.18·103 kDa. Harmony, defined as the sweet and sour ratio, influenced the palate fullness intensity perception. In the harmonic samples (sour/sweet sensory balanced), the size of HN-SP (> 25 nm) showed a positive correlation to palate fullness intensity. The results suggest the importance of dextrins, arabinoxylan, and β-glucan in modulating the sensory characteristics of harmonic bottom-fermented NABs.
Collapse
Affiliation(s)
- Rolando César Moreno Ravelo
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, 85354 Freising, Germany
| | - Jens Dieter Masch
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, 85354 Freising, Germany
| | - Martina Gastl
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, 85354 Freising, Germany.
| | - Thomas Becker
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, 85354 Freising, Germany
| |
Collapse
|
7
|
Plavchak CL, Smith WC, Bria CRM, Williams SKR. New Advances and Applications in Field-Flow Fractionation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:257-279. [PMID: 33770457 DOI: 10.1146/annurev-anchem-091520-052742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-flow fractionation (FFF) is a family of techniques that was created especially for separating and characterizing macromolecules, nanoparticles, and micrometer-sized analytes. It is coming of age as new nanomaterials, polymers, composites, and biohybrids with remarkable properties are introduced and new analytical challenges arise due to synthesis heterogeneities and the motivation to correlate analyte properties with observed performance. Appreciation of the complexity of biological, pharmaceutical, and food systems and the need to monitor multiple components across many size scales have also contributed to FFF's growth. This review highlights recent advances in FFF capabilities, instrumentation, and applications that feature the unique characteristics of different FFF techniques in determining a variety of information, such as averages and distributions in size, composition, shape, architecture, and microstructure and in investigating transformations and function.
Collapse
Affiliation(s)
- Christine L Plavchak
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| | - William C Smith
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| | | | - S Kim Ratanathanawongs Williams
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| |
Collapse
|
8
|
Zhang W, Shen S, Song T, Chen X, Zhang A, Dou H. Insights into the structure and conformation of potato resistant starch (type 2) using asymmetrical flow field-flow fractionation coupled with multiple detectors. Food Chem 2021; 349:129168. [PMID: 33548882 DOI: 10.1016/j.foodchem.2021.129168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Insight into the structure and conformation characteristics of starch that influence its enzyme susceptibility is import for its potential application. In this study, the capacity of asymmetrical flow field-flow fractionation (AF4) coupled online with multi-angle light scatting (MALS) and differential refractive index (dRI) detectors (AF4-MALS-dRI) for monitoring of change in structure and conformation of potato starch during enzymatic hydrolysis was evaluated. The dissolution behavior of potato resistant starch (type 2) (PRS) was investigated. The effect of incubation time and amyloglucosidase concentration on the structure and conformation of potato starch was studied. The apparent density and the ratio of Rg (radius of gyration) to Rh (hydrodynamic radius) obtained from AF4-MALS-dRI were proven to be important parameters as they offer an insight into conformation of PRS at molecular level. Results suggested that gelatinization process made potato amylose molecules have a loose and random coil conformation which could contribute to an acceleration of enzymatic hydrolysis of potato starch. Furthermore, an intermediate with an elongated branched conformation was found between amylose and amylopectin populations, which may play a role in digestion property of potato starch. The results demonstrated that AF4-MALS-dRI is a powerful tool for better understanding of conformation of PRS.
Collapse
Affiliation(s)
- Wenhui Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Tiange Song
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xue Chen
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Aixia Zhang
- National Foxtail Millet Improvement Center, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Haiyang Dou
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Affiliated Hospital of Hebei University, Baoding 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China.
| |
Collapse
|
9
|
Bhattarai M, Sulaeva I, Pitkänen L, Kontro I, Tenkanen M, Potthast A, Mikkonen KS. Colloidal features of softwood galactoglucomannans-rich extract. Carbohydr Polym 2020; 241:116368. [DOI: 10.1016/j.carbpol.2020.116368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 01/17/2023]
|
10
|
Study on structure-function of starch by asymmetrical flow field-flow fractionation coupled with multiple detectors: A review. Carbohydr Polym 2019; 226:115330. [DOI: 10.1016/j.carbpol.2019.115330] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
|
11
|
Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications. SEPARATIONS 2018. [DOI: 10.3390/separations5010014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|