1
|
Rudt E, Faist C, Schwantes V, Wiedmaier-Czerny N, Lehnert K, Topman-Rakover S, Brill A, Burdman S, Hayouka Z, Vetter W, Hayen H. In-depth phospholipid profiling of plant-pathogenic bacteria after treatment with antimicrobial random peptide mixtures. Anal Chim Acta 2025; 1342:343680. [PMID: 39919861 DOI: 10.1016/j.aca.2025.343680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND The ability of plant-pathogenic bacteria to develop antimicrobial resistance against crop protection products represents a significant challenge. An alternative to conventional crop protecting products could be random peptide mixtures (RPMs), which potentially target the phospholipid-containing cell membrane. The randomized arrangement of the peptides minimizes the risk of bacterial resistance developing against the RPMs. However, not all plant-pathogenic bacteria exhibited growth inhibition after RPM treatment. Our prior studies revealed correlations between bacterial growth inhibition and changes in the fatty acid pattern following treatment. However, additional data on the intact phospholipid composition are essential to further understand and improve novel RPMs. RESULTS Accordingly, we developed an analytical setup for in-depth bacterial lipid membrane characterization based on two complementary methods in conjunction with chemometric data evaluation to study the impact of RPM treatment on phospholipid class and species level. An efficient phospholipid class quantitation using hydrophilic interaction liquid chromatography (HILIC)-based lipid class separation with uniform charged aerosol detection (CAD) revealed distinct differences in the class composition of six plant-pathogenic bacteria. Moreover, branched-chain fatty acid (BCFA)-comprising phospholipid profiling via liquid chromatography-tandem mass spectrometry (LC-MS/MS) provided additional lipid species information to classify the investigated bacteria based on the number of bound BCFA. The combination of these techniques served for a comprehensive characterization of the bacterial membrane adaptation to the RPM treatment, which showed some correlations with the inhibitory effects of the RPMs. SIGNIFICANCE In this proof-of-concept study, HILIC-CAD phospholipid quantitation and BCFA-comprising phospholipid profiling were introduced as complementary techniques for in-depth characterization of bacterial cell membranes as well as membrane adaptations at both phospholipid class and species level. Our developed analytical setup may facilitate future studies targeting in-depth characterization of bacterial lipid membranes.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Christian Faist
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Vera Schwantes
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nina Wiedmaier-Czerny
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Shiri Topman-Rakover
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany.
| |
Collapse
|
2
|
Rudt E, Faist C, Schwantes V, Konrad N, Wiedmaier-Czerny N, Lehnert K, Topman-Rakover S, Brill A, Burdman S, Hayouka Z, Vetter W, Hayen H. LC-MS/MS-based phospholipid profiling of plant-pathogenic bacteria with tailored separation of methyl-branched species. Anal Bioanal Chem 2024; 416:5513-5525. [PMID: 39052053 PMCID: PMC11427607 DOI: 10.1007/s00216-024-05451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Plant-pathogenic bacteria are one of the major constraints on agricultural yield. In order to selectively treat these bacteria, it is essential to understand the molecular structure of their cell membrane. Previous studies have focused on analyzing hydrolyzed fatty acids (FA) due to the complexity of bacterial membrane lipids. These studies have highlighted the occurrence of branched-chain fatty acids (BCFA) alongside normal-chain fatty acids (NCFA) in many bacteria. As several FA are bound in the intact phospholipids of the bacterial membrane, the presence of isomeric FA complicates lipid analysis. Furthermore, commercially available reference standards do not fully cover potential lipid isomers. To address this issue, we have developed a reversed-phase high-performance liquid chromatography (RP-HPLC) method with tandem mass spectrometry (MS/MS) to analyze the phospholipids of various plant-pathogenic bacteria with a focus on BCFA containing phospholipids. The study revealed the separation of three isomeric phosphatidylethanolamines (PE) depending on the number of bound BCFA to NCFA. The validation of the retention order was based on available reference standards in combination with the analysis of hydrolyzed fatty acids through gas chromatography with mass spectrometry (GC/MS) after fractionation. Additionally, the transferability of the retention order to other major lipid classes, such as phosphatidylglycerols (PG) and cardiolipins (CL), was thoroughly examined. Using the information regarding the retention behavior, the phospholipid profile of six plant-pathogenic bacteria was structurally elucidated. Furthermore, the developed LC-MS/MS method was used to classify the plant-pathogenic bacteria based on the number of bound BCFA in the phospholipidome.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Christian Faist
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Vera Schwantes
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nele Konrad
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nina Wiedmaier-Czerny
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Shiri Topman-Rakover
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Walter Vetter
- Institute of Food Chemistry (170b) , University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany.
| |
Collapse
|
3
|
Ruiz W, Fontagné-Dicharry S, Verdier S, Dayton DC, Guillemant J, Moulian R, Giusti P, Barrère-Mangote C, Bouyssiere B. Quantifying Phospholipids in Organic Samples Using a Hydrophilic Interaction Liquid Chromatography-Inductively Coupled Plasma High-Resolution Mass Spectrometry (HILIC-ICP-HRMS) Method. Anal Chem 2024. [PMID: 39264017 DOI: 10.1021/acs.analchem.4c01883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this study, a novel method using hydrophilic interaction liquid chromatography (HILIC) coupled with inductively coupled plasma high-resolution mass spectrometry (ICP-HRMS) was introduced for the quantification of phospholipids in oil samples. The method employed a bridged ethyl hybrid (BEH) stationary phase HILIC column with a tetrahydrofuran (THF)/water mobile phase, enhancing the solubility and detection of phospholipids. During the study, a gradient/matrix effect on ICP-HRMS sensitivity was observed and successfully compensated for experimentally, ensuring reliable quantification results. This approach has proven effective for a wide range of different oil samples including vegetable oils, animal fats, and phospholipid supplements. Notably, this method allowed the direct quantification of phospholipids in oil samples, bypassing the need for prior sample preparation methods, such as solid phase extraction (SPE), thereby streamlining the analytical process. The precision, accuracy, and reduced need for extensive sample preparation offered by this method mark a significant advancement in lipids analysis. Its robustness and broad applicability have substantial implications for industries such as food and renewable energy production, where both efficient and accurate lipid identification and quantification are crucial.
Collapse
Affiliation(s)
- Wladimir Ruiz
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 2 Av. Pr. Angot, 64053 Pau, France
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, BP 27, F-76700 Harfleur, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| | | | - Sylvain Verdier
- Haldor Topsoe A/S, Haldor Topsøes allé 1, 2800 Kgs. Lyngby, Denmark
| | - David C Dayton
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Julie Guillemant
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
- TotalEnergies OneTech Belgium, Zone Industrielle C, B-7187 Feluy, Belgium
| | - Rémi Moulian
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, BP 27, F-76700 Harfleur, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| | - Pierre Giusti
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 2 Av. Pr. Angot, 64053 Pau, France
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, BP 27, F-76700 Harfleur, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| | - Caroline Barrère-Mangote
- TotalEnergies OneTech, TotalEnergies Research & Technology Gonfreville, BP 27, F-76700 Harfleur, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| | - Brice Bouyssiere
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 2 Av. Pr. Angot, 64053 Pau, France
- International Joint Laboratory iC2MC: Complex Matrices Molecular Characterization, Total Research & Technology, Gonfreville, BP 27, 76700 Harfleur, France
| |
Collapse
|
4
|
Scholz J, Rudt E, Gremme A, Gaßmöller Née Wienken CM, Bornhorst J, Hayen H. Hyphenation of supercritical fluid chromatography and trapped ion mobility-mass spectrometry for quantitative lipidomics. Anal Chim Acta 2024; 1317:342913. [PMID: 39030025 DOI: 10.1016/j.aca.2024.342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Lipidomics studies require rapid separations with accurate and reliable quantification results to further elucidate the role of lipids in biological processes and their biological functions. Supercritical fluid chromatography (SFC), in particular, can provide this rapid and high-resolution separation. The combination with trapped ion mobility spectrometry (TIMS) has not yet been applied, although the post-ionization separation method in combination with liquid chromatography or imaging techniques has already proven itself in resolving isomeric and isobaric lipids and preventing false identifications. However, a multidimensional separation method should not only allow confident identification but also provide quantitative results to substantiate studies with absolute concentrations. RESULTS A SFC method was developed and the hyphenation of SFC and TIMS was further explored towards the separation of different isobaric overlaps. Furthermore, lipid identification was performed using mass spectrometry (MS) and parallel accumulation serial fragmentation (PASEF) MS/MS experiments in addition to retention time and collision cross section (CCS). Quantification was further investigated with short TIMS ramps and performed based on the ion mobility signal of lipids, since TIMS increases the sensitivity by noise filtering. The final method was, as an exemplary study, applied to investigate the function of different ceramide synthases (CerS) in the nematode and model organism Caenorhabditis elegans (C. elegans). Loss of three known CerS hyl-1, hyl-2 and lagr-1 demonstrated different influences on and alterations in the sphingolipidome. SIGNIFICANCE This method describes for the first time the combination of SFC and TIMS-MS/MS, which enables a fast and sensitive quantification of lipids. The results of the application to C. elegans samples prove the functionality of the method and support research on the metabolism of sphingolipids in nematodes.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Edward Rudt
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Anna Gremme
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | | | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
5
|
Rudt E, Schneider S, Hayen H. Hyphenation of Liquid Chromatography and Trapped Ion Mobility - Mass Spectrometry for Characterization of Isomeric Phosphatidylethanolamines with Focus on N-Acylated Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1584-1593. [PMID: 38842006 DOI: 10.1021/jasms.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In prior research, hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) has demonstrated applicability for characterizing regioisomers in lipidomics studies, including phosphatidylglycerols (PG) and bis(monoacyl)glycerophosphates (BMP). However, there are other lipid regioisomers, such as phosphatidylethanolamines (PE) and lyso-N-acyl-PE (LNAPE), that have not been studied as extensively. Therefore, hyphenated mass spectrometric methods are needed to investigate PE and LNAPE regioisomers individually. The asymmetric structure of LNAPE favors isomeric species, which can result in coelution and chimeric MS/MS spectra. One way to address the challenge of chimeric MS/MS spectra is through mobility-resolved fragmentation using trapped ion mobility spectrometry (TIMS). Therefore, we developed a multidimensional HILIC-TIMS-MS/MS approach for the structural characterization of isomeric phosphatidylethanolamines in both negative and positive ionization modes. The study revealed the complementary fragmentation pattern and ion mobility behavior of LNAPE in both ionization modes, which was confirmed by a self-synthesized LNAPE standard. With this knowledge, a distinction of regioisomeric PE and LNAPE was achieved in human plasma samples. Furthermore, regioisomeric LNAPE species containing at least one unsaturated fatty acid were noted to exhibit a change in collision cross-section in positive ionization mode, leading to a lipid characterization with respect to fatty acyl positional level. Similar mobility behavior was also observed for the biological LNAPE precursor N-acyl-PE (NAPE). Application of this approach to plasma and cereal samples demonstrated its effectiveness in regioisomeric LNAPE and NAPE species' elucidation.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Svenja Schneider
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| |
Collapse
|
6
|
Peterka O, Maccelli A, Jirásko R, Vaňková Z, Idkowiak J, Hrstka R, Wolrab D, Holčapek M. HILIC/MS quantitation of low-abundant phospholipids and sphingolipids in human plasma and serum: Dysregulation in pancreatic cancer. Anal Chim Acta 2024; 1288:342144. [PMID: 38220279 DOI: 10.1016/j.aca.2023.342144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
A new hydrophilic interaction liquid chromatography - mass spectrometry method is developed for low-abundant phospholipids and sphingolipids in human plasma and serum. The optimized method involves the Cogent Silica type C hydride column, the simple sample preparation by protein precipitation, and the removal of highly abundant lipid classes using the postcolumn valve directed to waste during two elution windows. The method allows a highly confident and sensitive identification of low-abundant lipid classes in human plasma (246 lipid species from 24 lipid subclasses) based on mass accuracy and retention dependencies in both polarity modes. The method is validated for quantitation using two internal standards (if available) for each lipid class and applied to human plasma and serum samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC), healthy controls, and NIST SRM 1950. Multivariate data analysis followed by various statistical projection methods is used to determine the most dysregulated lipids. Significant downregulation is observed for lysophospholipids with fatty acyl composition 16:0, 18:0, 18:1, and 18:2. Distinct trends are observed for phosphatidylethanolamines (PE) in relation to the bonding type of fatty acyls, where most PE with acyl bonds are upregulated, while ether/plasmenyl PE are downregulated. For the sphingolipid category, sphingolipids with very long N-acyl chains are downregulated, while sphingolipids with shorter N-acyl chains were upregulated in PDAC. These changes are consistently observed for various classes of sphingolipids, ranging from ceramides to glycosphingolipids, indicating a possible metabolic disorder in ceramide biosynthesis caused by PDAC.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Alessandro Maccelli
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jakub Idkowiak
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Denise Wolrab
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic; University of Vienna, Department of Analytical Chemistry, Währinger Strasse 38, 1090, Vienna, Austria
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
7
|
Schneider S, Hammann S, Hayen H. Determination of Polar Lipids in Wheat and Oat by a Complementary Approach of Hydrophilic Interaction Liquid Chromatography and Reversed-Phase High-Performance Liquid Chromatography Hyphenated with High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433133 DOI: 10.1021/acs.jafc.3c02073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Cereals contain lipids that fulfill important physiological roles and are associated with stress in the plant. However, many of the specific biological roles of lipids are yet unknown. Comprehensive analysis of these polar lipid categories in whole grain wheat and oat, cereals highly relevant also in nutrition, was performed. Hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with high-resolution mass spectrometry using electrospray ionization in both positive and negative ionization mode was used. Exploiting the different separation mechanisms, HILIC was used as a screening method for straightforward lipid class assignment and enabled differentiation of isomeric lipid classes, like phosphatidylethanolamine and lyso-N-acylphosphatidylethanolamine, while RP-HPLC facilitated separation of constitutional isomers. In combination with data-dependent MS/MS experiments, 67 lipid species belonging to nine polar lipid classes could be identified. Furthermore, with both ionization modes, fatty acyl chains directly connected to the lipid headgroups could be assigned. This work focused on the four lipid classes N-acylphosphatidylethanolamines, acyl-monogalactosyldiacylglycerols, digalactosyldiacylglycerols, and monogalactosyldiacylglycerols as they were less studied in detail in the past. Applying the complementary approach, the relative lipid species compositions in these lipid classes was investigated in detail.
Collapse
Affiliation(s)
- Svenja Schneider
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
8
|
Rudt E, Feldhaus M, Margraf CG, Schlehuber S, Schubert A, Heuckeroth S, Karst U, Jeck V, Meyer SW, Korf A, Hayen H. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics. Anal Chem 2023. [PMID: 37307407 DOI: 10.1021/acs.analchem.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The parallel accumulation-serial fragmentation (PASEF) approach based on trapped ion mobility spectrometry (TIMS) enables mobility-resolved fragmentation and a higher number of fragments in the same time period compared to conventional MS/MS experiments. Furthermore, the ion mobility dimension offers novel approaches for fragmentation. Using parallel reaction monitoring (prm), the ion mobility dimension allows a more accurate selection of precursor windows, while using data-independent aquisition (dia) spectral quality is improved through ion-mobility filtering. Owing to favorable implementation in proteomics, the transferability of these PASEF modes to lipidomics is of great interest, especially as a result of the high complexity of analytes with similar fragments. However, these novel PASEF modes have not yet been thoroughly evaluated for lipidomics applications. Therefore, data-dependent acquisition (dda)-, dia-, and prm-PASEF were compared using hydrophilic interaction liquid chromatography (HILIC) for phospholipid class separation in human plasma samples. Results show that all three PASEF modes are generally suitable for usage in lipidomics. Although dia-PASEF achieves a high sensitivity in generating MS/MS spectra, the fragment-to-precursor assignment for lipids with both, similar retention time as well as ion mobility, was difficult in HILIC-MS/MS. Therefore, dda-PASEF is the method of choice to investigate unknown samples. However, the best data quality was achieved by prm-PASEF, owing to the focus on fragmentation of specified targets. The high selectivity and sensitivity in generating MS/MS spectra of prm-PASEF could be a potential alternative for targeted lipidomics, e.g., in clinical applications.
Collapse
Affiliation(s)
- E Rudt
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - M Feldhaus
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - C G Margraf
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - S Schlehuber
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - A Schubert
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - S Heuckeroth
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - U Karst
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - V Jeck
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - S W Meyer
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - A Korf
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - H Hayen
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
9
|
Ren W, Sun M, Shi X, Wang T, Wang Y, Wang C, Li M. Progress of Mass Spectrometry-Based Lipidomics in the Dairy Field. Foods 2023; 12:foods12112098. [PMID: 37297344 DOI: 10.3390/foods12112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Lipids play important biological roles, such as providing essential fatty acids and signaling. The wide variety and structural diversity of lipids, and the limited technical means to study them, have seriously hampered the resolution of the mechanisms of action of lipids. With advances in mass spectrometry (MS) and bioinformatic technologies, large amounts of lipids have been detected and analyzed quickly using MS-based lipidomic techniques. Milk lipids, as complex structural metabolites, play a crucial role in human health. In this review, the lipidomic techniques and their applications to dairy products, including compositional analysis, quality identification, authenticity identification, and origin identification, are discussed, with the aim of providing technical support for the development of dairy products.
Collapse
Affiliation(s)
- Wei Ren
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengqi Sun
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xiaoyuan Shi
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Tianqi Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yonghui Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Mengmeng Li
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
10
|
Berg AL, Showalter MR, Kosaisawe N, Hu M, Stephens NC, Sa M, Heil H, Castro N, Chen JJ, VanderVorst K, Wheeler MR, Rabow Z, Cajka T, Albeck J, Fiehn O, Carraway KL. Cellular transformation promotes the incorporation of docosahexaenoic acid into the endolysosome-specific lipid bis(monoacylglycerol)phosphate in breast cancer. Cancer Lett 2023; 557:216090. [PMID: 36773796 PMCID: PMC10589064 DOI: 10.1016/j.canlet.2023.216090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Bis(monoacylglycero)phosphates (BMPs), a class of lipids highly enriched within endolysosomal organelles, are key components of the lysosomal intraluminal vesicles responsible for activating sphingolipid catabolic enzymes. While BMPs are understudied relative to other phospholipids, recent reports associate BMP dysregulation with a variety of pathological states including neurodegenerative diseases and lysosomal storage disorders. Since the dramatic lysosomal remodeling characteristic of cellular transformation could impact BMP abundance and function, we employed untargeted lipidomics approaches to identify and quantify BMP species in several in vitro and in vivo models of breast cancer and comparative non-transformed cells and tissues. We observed lower BMP levels within transformed cells relative to normal cells, and consistent enrichment of docosahexaenoic acid (22:6) fatty acyl chain-containing BMP species in both human- and mouse-derived mammary tumorigenesis models. Our functional analysis points to a working model whereby 22:6 BMPs serve as reactive oxygen species scavengers in tumor cells, protecting lysosomes from oxidant-induced lysosomal membrane permeabilization. Our findings suggest that breast tumor cells might divert polyunsaturated fatty acids into BMP lipids as part of an adaptive response to protect their lysosomes from elevated reactive oxygen species levels, and raise the possibility that BMP-mediated lysosomal protection is a tumor-specific vulnerability that may be exploited therapeutically.
Collapse
Affiliation(s)
- Anastasia L Berg
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Megan R Showalter
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Nont Kosaisawe
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - Michelle Hu
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Nathanial C Stephens
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Michael Sa
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Hailey Heil
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Noemi Castro
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jenny J Chen
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Madelyn R Wheeler
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Zachary Rabow
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Tomas Cajka
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA; Institute of Physiology of the Czech Academy of Sciences, Prague, 14200, Czech Republic
| | - John Albeck
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
11
|
Synthesis of Phosphatidyl Glycerol Containing Unsymmetric Acyl Chains Using H-Phosphonate Methodology. Molecules 2022; 27:molecules27072199. [PMID: 35408598 PMCID: PMC9000858 DOI: 10.3390/molecules27072199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Naturally occurring phospholipids, such as phosphatidyl glycerol (PG), are gaining interest due to the roles they play in disease mechanisms. To elucidate the metabolism of PG, an optically pure material is required, but this is unfortunately not commercially available. Our previous PG synthesis route utilized phosphoramidite methodology that addressed issues surrounding fatty acid substrate scope and glycerol backbone modifications prior to headgroup phosphorylation, but faltered in the reproducibility of the overall pathway due to purification challenges. Herein, we present a robust pathway to optically pure PG in fewer steps, utilizing H-phosphonates that features a chromatographically friendly and stable triethyl ammonium H-phosphonate salt. Our route is also amendable to the simultaneous installation of different acyl chains, either saturated or unsaturated, on the glycerol backbone.
Collapse
|
12
|
Scholz J, Helmer PO, Nicolai MM, Bornhorst J, Hayen H. Profiling of sphingolipids in Caenorhabditis elegans by two-dimensional multiple heart-cut liquid chromatography - mass spectrometry. J Chromatogr A 2021; 1655:462481. [PMID: 34455370 DOI: 10.1016/j.chroma.2021.462481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Sphingolipids exert important functions in cells, ranging from stabilising the cell membrane to bioactive signalling in signal transduction pathways. Changed concentrations of sphingolipids are associated with, among others, neurodegenerative and cardiovascular diseases. In this work, we present a novel two-dimensional liquid chromatography method (2D-LC) coupled to tandem mass spectrometry (MS/MS) for the identification of ceramides, hexosylceramides and sphingomyelins in the model organism Caenorhabditis elegans (C. elegans). The method utilises a multiple heart-cut approach with a hydrophilic interaction liquid chromatography (HILIC) separation in the first dimension. The fractions of the sphingolipid classes were cut out and thereby separated from the abundant glycerolipids, which offers a simplified sample preparation and a high degree of automation as it compensates the alkaline depletion step usually conducted prior to the chromatographic analysis. The fractions were stored in a sample loop and transferred onto the second column with the combination of two six port valves. A reversed phase liquid chromatography was performed as the second dimension and allowed for a separation of the species within a sphingolipid class and according to the fatty acid moiety of the sphingolipid. The segregation of the abundant glycerolipids and the reduced matrix effects allowed for better identification of low abundant species, especially dihydro-sphingolipids with a saturated sphingoid base. In addition, the separation of the three fractions was carried out parallel to the separation and equilibration in the first dimension, which leads to no extension of the analysis time for the 2D-LC compared to the one-dimensional HILIC method. In total 45 sphingolipids were detected in the C. elegans lipid extract and identified via accurate mass and MS/MS fragments.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Patrick O Helmer
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany.
| |
Collapse
|
13
|
Investigation of alterations in phospholipids during the production chain of infant formulas via HILIC-QTOF-MS and multivariate data analysis. Food Chem 2021; 364:130414. [PMID: 34175632 DOI: 10.1016/j.foodchem.2021.130414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Phospholipids play a key role in infant nutrition and cognitive function. In this study, hydrophilic interaction liquid chromatography coupled to quadrupole time-of-flight mass spectrometry method was firstly developed to analyze the composition of phospholipids. Then we characterized and quantified phospholipids extracted from raw, pasteurized, homogenized, and spray-dried milk to investigate the effect of the technological process on the composition of the phospholipids. Results indicate that the composition of the phospholipids underwent minor changes after pasteurization, while the concentration of phospholipids was significantly affected by the spray-drying process, especially phosphatidylethanolamine and phosphatidylinositol. Multivariate data analysis further verified the results and indicated that phospholipids containing polyunsaturated fatty acids had undergone significant changes during the production chain, especially in spray-drying. This work reveals the changes of phospholipids composition during the production chain of infant formulas and serve as a reference for the subsequent optimization of infant formulas to meet nutritional need of infants.
Collapse
|
14
|
Cerrato A, Bedia C, Capriotti AL, Cavaliere C, Gentile V, Maggi M, Montone CM, Piovesana S, Sciarra A, Tauler R, Laganà A. Untargeted metabolomics of prostate cancer zwitterionic and positively charged compounds in urine. Anal Chim Acta 2021; 1158:338381. [PMID: 33863412 DOI: 10.1016/j.aca.2021.338381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Prostate cancer, a leading cause of cancer-related deaths worldwide, principally occurs in over 50-year-old men. Nowadays there is urgency to discover biomarkers alternative to prostate-specific antigen, as it cannot discriminate patients with benign prostatic hyperplasia from clinically significant forms of prostatic cancer. In the present paper, 32 benign prostatic hyperplasia and 41 prostatic cancer urine samples were collected and analyzed. Polar and positively charged metabolites were therein investigated using an analytical platform comprising an up to 40-fold analyte enrichment step by graphitized carbon black solid-phase extraction, HILIC separation, and untargeted high-resolution mass spectrometry analysis. These classes of compounds are often neglected in common metabolomics experiments even though previous studies reported their significance in cancer biomarker discovery. The complex metabolomics big datasets, generated by the UHPLC-HRMS, were analyzed with the ROIMCR procedure, based on the selection of the MS regions of interest data and their analysis by the Multivariate Curve-Resolution Alternating Least Squares chemometrics method. This approach allowed the resolution and tentative identification of the metabolites differentially expressed by the two data sets. Among these, amino acids and carnitine derivatives were tentatively identified highlighting the importance of the proposed methodology for cancer biomarker research.
Collapse
Affiliation(s)
- Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmen Bedia
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Chiara Cavaliere
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Vincenzo Gentile
- Dipartimento di Scienze Ginecologio-ostetriche e Scienze Urologiche, Sapienza Università, di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Martina Maggi
- Dipartimento di Scienze Ginecologio-ostetriche e Scienze Urologiche, Sapienza Università, di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Susy Piovesana
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Sciarra
- Dipartimento di Scienze Ginecologio-ostetriche e Scienze Urologiche, Sapienza Università, di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Roma Tauler
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
15
|
Helmer PO, Nordhorn ID, Korf A, Behrens A, Buchholz R, Zubeil F, Karst U, Hayen H. Complementing Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging with Chromatography Data for Improved Assignment of Isobaric and Isomeric Phospholipids Utilizing Trapped Ion Mobility-Mass Spectrometry. Anal Chem 2021; 93:2135-2143. [PMID: 33416303 DOI: 10.1021/acs.analchem.0c03942] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lipids, such for example the multifaceted category of glycerophospholipids (GP), play a major role in many biological processes. High-resolution mass spectrometry is able to identify these highly diverse lipid species in combination with fragmentation experiments (MS/MS) on the basis of the accurate m/z and fragmentation pattern. However, for the differentiation of isomeric lipids or isobaric interferences, more elaborate separation methods are required. Especially for imaging techniques, such as matrix-assisted laser desorption/ionization (MALDI)-MS imaging, the identification is often exclusively based on the accurate m/z. Fragmentation via MS/MS increases the confidence in lipid annotation in imaging approaches. However, this is sometimes not feasible due to insufficient sensitivity and significantly prolonged analysis time. The use of a separation dimension such as trapped ion mobility spectrometry (TIMS) after ionization strengthens the confidence of the identification based on the collision cross section (CCS). Since CCS libraries are limited, a tissue-specific database was initially generated using hydrophilic interaction liquid chromatography-TIMS-MS. Using this database, the identification of isomeric lipid classes as well as isobaric interferences in a lipid class was performed using a mouse spleen sample in a workflow described in this study. Besides a CCS-based identification as an additional identification criterion for GP in general, the focus was on the distinction of the isomeric GP classes phosphatidylglycerol and bis(monoacylglycero)phosphate, as well as the differentiation of possible isobaric interferences based on the formation of adducts by MALDI-TIMS-MS imaging on a molecular level.
Collapse
Affiliation(s)
- Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Ilona D Nordhorn
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Ansgar Korf
- Bruker Daltonik GmbH, Fahrenheitstraße 4, Bremen 28359, Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Florian Zubeil
- Bruker Daltonik GmbH, Fahrenheitstraße 4, Bremen 28359, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| |
Collapse
|
16
|
Analytical Platforms for the Determination of Phospholipid Turnover in Breast Cancer Tissue: Role of Phospholipase Activity in Breast Cancer Development. Metabolites 2021; 11:metabo11010032. [PMID: 33406793 PMCID: PMC7824782 DOI: 10.3390/metabo11010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Altered lipid metabolism has been associated with the progression of various cancers, and aberrant expression of enzymes involved in the lipid metabolism has been detected in different stages of cancer. Breast cancer (BC) is one of the cancer types known to be associated with alterations in the lipid metabolism and overexpression of enzymes involved in this metabolism. It has been demonstrated that inhibition of the activity of certain enzymes, such as that of phospholipase A2 in BC cell lines sensitizes these cells and decreases the IC50 values for forthcoming therapy with traditional drugs, such as doxorubicin and tamoxifen. Moreover, other phospholipases, such as phospholipase C and D, are involved in intracellular signal transduction, which emphasizes their importance in cancer development. Finally, BC is assumed to be dependent on the diet and the composition of lipids in nutrients. Despite their importance, analytical approaches that can associate the activity of phospholipases with changes in the lipid composition and distribution in cancer tissues are not yet standardized. In this review, an overview of various analytical platforms that are applied on the study of lipids and phospholipase activity in BC tissues will be given, as well as their association with cancer diagnosis and tumor progression. The methods that are applied to tissues obtained from the BC patients will be emphasized and critically evaluated, regarding their applicability in oncology.
Collapse
|
17
|
Iturrospe E, Da Silva KM, Talavera Andújar B, Cuykx M, Boeckmans J, Vanhaecke T, Covaci A, van Nuijs ALN. An exploratory approach for an oriented development of an untargeted hydrophilic interaction liquid chromatography-mass spectrometry platform for polar metabolites in biological matrices. J Chromatogr A 2020; 1637:461807. [PMID: 33360078 DOI: 10.1016/j.chroma.2020.461807] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The analysis of polar metabolites based on liquid chromatography-mass spectrometry (LC-MS) methods should take into consideration the complexity of interactions in LC columns to be able to cover a broad range of metabolites of key biological pathways. Therefore, in this study, different chromatographic columns were tested for polar metabolites including reversed-phase and hydrophilic interaction liquid chromatography (HILIC) columns. Based on a column screening, two new generations of zwitterionic HILIC columns were selected for further evaluation. A tree-based method optimization was applied to investigate the chromatographic factors affecting the retention mechanisms of polar metabolites with zwitterionic stationary phases. The results were evaluated based on a scoring system which was applied for more than 80 polar metabolites with a high coverage of key human metabolic pathways. The final optimized methods showed high complementarity to analyze a wide range of metabolic classes including amino acids, small peptides, sugars, amino sugars, phosphorylated sugars, organic acids, nucleobases, nucleosides, nucleotides and acylcarnitines. Optimized methods were applied to analyze different biological matrices, including human urine, plasma and liver cell extracts using an untargeted approach. The number of high-quality features (< 30% median relative standard deviation) ranged from 3,755 for urine to 5,402 for the intracellular metabolome of liver cells, showing the potential of the methods for untargeted purposes.
Collapse
Affiliation(s)
- Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium.
| | | | - Begoña Talavera Andújar
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, University of Castilla-La Mancha, Calle Almansa 14, 02008 Albacete, Spain
| | - Matthias Cuykx
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Laboratory of Clinical Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | |
Collapse
|
18
|
Showalter MR, Berg AL, Nagourney A, Heil H, Carraway KL, Fiehn O. The Emerging and Diverse Roles of Bis(monoacylglycero) Phosphate Lipids in Cellular Physiology and Disease. Int J Mol Sci 2020; 21:ijms21218067. [PMID: 33137979 PMCID: PMC7663174 DOI: 10.3390/ijms21218067] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Although understudied relative to many phospholipids, accumulating evidence suggests that bis(monoacylglycero)phosphate (BMP) is an important class of regulatory lipid that plays key roles in lysosomal integrity and function. BMPs are rare in most mammalian tissues, comprising only a few percent of total cellular lipid content, but are elevated in cell types such as macrophages that rely heavily on lysosomal function. BMPs are markedly enriched in endosomal and lysosomal vesicles compared to other organelles and membranous structures, and their unique sn-1:sn-1′ stereoconfiguration may confer stability within the hydrolytic lysosomal environment. BMP-enriched vesicles serve in endosomal-lysosomal trafficking and function as docking structures for the activation of lysosomal hydrolytic enzymes, notably those involved in the catabolic breakdown of sphingolipids. BMP levels are dysregulated in lysosomal storage disorders, phospholipidosis, metabolic diseases, liver and kidney diseases and neurodegenerative disorders. However, whether BMP alteration is a mediator or simply a marker of pathological states is unclear. Likewise, although BMP acyl chain composition may be altered with disease states, the functional significance of specific BMP species remains to be resolved. Newly developed tools for untargeted lipidomic analysis, together with a deeper understanding of enzymes mediating BMP synthesis and degradation, will help shed further light on the functional significance of BMPs in cellular physiology and pathology.
Collapse
Affiliation(s)
- Megan R. Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (M.R.S.); (A.N.); (H.H.)
| | - Anastasia L. Berg
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (A.L.B.); (K.L.C.III)
| | - Alexander Nagourney
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (M.R.S.); (A.N.); (H.H.)
| | - Hailey Heil
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (M.R.S.); (A.N.); (H.H.)
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (A.L.B.); (K.L.C.III)
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA; (M.R.S.); (A.N.); (H.H.)
- Correspondence:
| |
Collapse
|
19
|
Struzik ZJ, Weerts AN, Storch J, Thompson DH. Stereospecific synthesis of phosphatidylglycerol using a cyanoethyl phosphoramidite precursor. Chem Phys Lipids 2020; 231:104933. [PMID: 32533981 DOI: 10.1016/j.chemphyslip.2020.104933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Phosphatidylglycerols (PG) are a family of naturally occurring phospholipids that are responsible for critical operations within cells. PG are characterized by an (R) configuration in the diacyl glycerol backbone and an (S) configuration in the phosphoglycerol head group. Herein, we report a synthetic route to provide control over the PG stereocenters as well as control of the acyl chain identity.
Collapse
Affiliation(s)
- Zachary J Struzik
- Department of Chemistry, Purdue University, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, United States
| | - Ashley N Weerts
- Department of Chemistry, Purdue University, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, United States
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - David H Thompson
- Department of Chemistry, Purdue University, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
20
|
Vosse C, Thyssen GM, Sperling M, Karst U, Hayen H. Complementary approach for analysis of phospholipids by liquid chromatography hyphenated to elemental and molecular mass spectrometry. ANALYTICAL SCIENCE ADVANCES 2020; 1:46-55. [PMID: 38715851 PMCID: PMC10989138 DOI: 10.1002/ansa.20190009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2024]
Abstract
Phospholipids are one of the most important lipid categories with multiple functions in biological systems. Their analysis can contribute to a better understanding of metabolomic and kinetic processes in living cells. Comprehensive methods based on liquid chromatography coupled to mass spectrometry are available for phospholipid identification and quantification. However, quantification of phospholipids using electrospray ionization-mass spectrometry with internal standards is still challenging due to several reasons. In particular, the detector response of phospholipid species differs with variation of the head group as well as the fatty acid chain length and double bond number. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) provides an alternative approach for their absolute quantification with universal detector response for phosphorus independent of its chemical form and proportional to its quantity. Therefore, a quantification method based on compound-independent calibration using hydrophilic interaction liquid chromatography (HILIC) coupled to ICP-MS/MS was developed. An inverse gradient system was implemented for constant mobile phase composition after HILIC separation, which provides steady plasma ionization conditions. Isobaric phosphorus interferences were decreased by using the oxygen reaction mode of the triple quadrupole based ICP-MS/MS instrument. Complementary molecular information was obtained by ESI-high-resolution MS and MS/MS. The applicability of this approach was demonstrated in a proof of concept by complementary analysis of a total lipid extract of baker's yeast.
Collapse
Affiliation(s)
- Christian Vosse
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterMünsterGermany
- Rottendorf Pharma GmbHEnnigerlohGermany
| | - Georgina M. Thyssen
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterMünsterGermany
- Thermo Fisher ScientificBremenGermany
| | - Michael Sperling
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterMünsterGermany
| | - Uwe Karst
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterMünsterGermany
| | - Heiko Hayen
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
21
|
Mass spectrometric investigation of cardiolipins and their oxidation products after two-dimensional heart-cut liquid chromatography. J Chromatogr A 2020; 1619:460918. [DOI: 10.1016/j.chroma.2020.460918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
|
22
|
Boskamp MS, Soltwisch J. Charge Distribution between Different Classes of Glycerophospolipids in MALDI-MS Imaging. Anal Chem 2020; 92:5222-5230. [DOI: 10.1021/acs.analchem.9b05761] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marcel S. Boskamp
- Institute of Hygiene, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
23
|
Helmer PO, Korf A, Hayen H. Analysis of artificially oxidized cardiolipins and monolyso-cardiolipins via liquid chromatography/high-resolution mass spectrometry and Kendrick mass defect plots after hydrophilic interaction liquid chromatography based sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8566. [PMID: 31469924 DOI: 10.1002/rcm.8566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Cardiolipins (CL) are a special lipid class which plays a main role in energy metabolism in mitochondria and is involved in apoptosis. In contrast to other glycerophospholipids, they contain four fatty acyl residues which results in a high structural diversity. Oxidation, for example by reactive oxygen species, or lyso forms such as monolyso-CL (MLCL), increases this diversity. Mass spectrometric analysis and computational identification of CL, MLCL and their oxidation products is therefore a challenging task. METHODS In order to distinguish CL, MLCL and their oxidation products, a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed. A hydrophilic interaction liquid chromatography (HILIC)-based solid-phase extraction (SPE) clean-up approach was developed for CL enrichment. Graphical analysis of CL, MLCL and their oxidation products was carried out by a three-dimensional Kendrick mass defect (3D-KMD) plot module, as well as a refined lipid search module of the open-source metabolomics data mining software MZmine 2. RESULTS The HILIC-based SPE clean-up enabled complete separation of polar and nonpolar lipid classes. A yeast (Saccharomyces cerevisiae) lipid extract, which was artificially oxidized by means of the Fenton reaction, was analyzed by the developed LC/MS/MS method. CL species with differences in chain length and degree of unsaturation have been separated by high-performance liquid chromatography (HPLC). In total 66 CL, MLCL and oxidized species have been identified utilizing 3D-KMD plots in combination with database matching using MZmine 2. For further characterization of annotated species, MS/MS experiments have been utilized. CONCLUSIONS 3D-KMD plots capturing chromatographic and high-resolution mass spectrometry data have been successfully used for graphical identification of CL, MLCL as well as their oxidized species. Therefore, we chose multiple KMD bases such as hydrogen and oxygen to visualize the degree of unsaturation and oxidation capturing chromatographic data by means of a color-coded paint scale as the third dimension. In combination with database matching, the analysis of low concentrated lipid species in complex samples has been significantly improved.
Collapse
Affiliation(s)
- Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Ansgar Korf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
24
|
Piovesana S, Cerrato A, Antonelli M, Benedetti B, Capriotti AL, Cavaliere C, Montone CM, Laganà A. A clean-up strategy for identification of circulating endogenous short peptides in human plasma by zwitterionic hydrophilic liquid chromatography and untargeted peptidomics identification. J Chromatogr A 2019; 1613:460699. [PMID: 31767259 DOI: 10.1016/j.chroma.2019.460699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/03/2023]
Abstract
Short peptides, namely di- tri- and tetra peptides, have been proven to play an important diagnostic role in several diseases. Therefore, the development of an analytical approach for their detection and identification is nowadays an important research goal. This paper describes an analytical procedure able to overcome the issues of short peptide isolation, clean-up and identification in plasma samples. Four different protocols were compared and tested to maximize both recovery and total number of identifications of short circulating plasma endogenous peptides. The purified peptides, coming from the four different tested protocols, were separated by zwitterionic hydrophilic liquid chromatography coupled to high-resolution mass spectrometry with the purpose of accomplishing an untargeted investigation based on suspect screening for short peptides in plasma. In particular, the use of Phree™ Phospholipid removal cartridge in combination with a purification step by solid phase extraction on a graphitized carbon black sorbent allowed the identification of the largest number of amino acid sequences (91 short peptides). The clean-up procedure allowed to tackle the issue of the low abundance of such peptides and their suppression during mass-spectrometric analysis. The results indicated that sample preparation is therefore fundamental for short peptide analysis in plasma samples.
Collapse
Affiliation(s)
- Susy Piovesana
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Michela Antonelli
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Barbara Benedetti
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
25
|
Henschel J, Wiemers-Meyer S, Diehl M, Lürenbaum C, Jiang W, Winter M, Nowak S. Preparative hydrophilic interaction liquid chromatography of acidic organofluorophosphates formed in lithium ion battery electrolytes. J Chromatogr A 2019; 1603:438-441. [PMID: 31301799 DOI: 10.1016/j.chroma.2019.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
The expansion of lithium ion battery (LIB) application is accompanied by the growth of battery pack sizes. This progression emphasizes the consideration of electrolyte safety as well as environmental aspects in case of abuse, accident, or recycling. Hexafluorophosphate is one of the most commonly used conducting salt anions in electrolytes. It has great potential to degrade to various acidic and non-acidic organo(fluoro)phosphates with presence of water and during battery cell operation. Consequently, toxicological investigation on these organo(fluoro)phosphates has emerged because they either have structural similarities as chemical warfare agents or play a widespread physiological role as phosphates in the human body. This circumstance underlines the need of isolated examination of these compounds for safety assessment. In this work, we used hydrophilic interaction liquid chromatography for the extraction of acidic organofluorophosphates from thermally aged LIB electrolytes. The developed two-step fractionation method provided high separation selectivity towards acidic head groups, which allowed the separation of undesired matrix and target compounds. These findings facilitate isolated toxicological investigations on organofluorophosphates that are beneficial for environmental and safety research, the battery cell industry, and human safety surveillance in regard to aged LIB electrolytes.
Collapse
Affiliation(s)
- Jonas Henschel
- University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany
| | - Simon Wiemers-Meyer
- University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany
| | - Marcel Diehl
- University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany
| | - Constantin Lürenbaum
- University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany
| | - Wen Jiang
- HILICON AB, Tvistevägen 48, 907 36 Umeå, Sweden
| | - Martin Winter
- University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany; Helmholtz-Institute Münster, IEK-12, FZ Jülich, Corrensstraße 46, 48149 Münster, Germany
| | - Sascha Nowak
- University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany.
| |
Collapse
|
26
|
Piovesana S, Capriotti AL, Cerrato A, Crescenzi C, La Barbera G, Laganà A, Montone CM, Cavaliere C. Graphitized Carbon Black Enrichment and UHPLC-MS/MS Allow to Meet the Challenge of Small Chain Peptidomics in Urine. Anal Chem 2019; 91:11474-11481. [DOI: 10.1021/acs.analchem.9b03034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Susy Piovesana
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Allé 51, DK-2200 Copenhagen, Denmark
| | - Aldo Laganà
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
27
|
Lee JC, Yang JS, Moon MH. Simultaneous Relative Quantification of Various Polyglycerophospholipids with Isotope-Labeled Methylation by Nanoflow Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2019; 91:6716-6723. [PMID: 31008580 DOI: 10.1021/acs.analchem.9b00800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we introduce a comprehensive analytical method for the separation and relative quantification of polyglycerophospholipids (PGPLs), including phosphatidylglycerol (PG), bis(monoacylglycero)phosphate (BMP), bis(diacylglycero)phosphate (BDP), Hemi BDP, cardiolipin (CL), monolysocardiolipin (MLCL), and dilysocardiolipin (DLCL), using isotope-labeled methylation (ILM) with nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (nUHPLC-ESI-MS/MS). Abnormal levels of BMP and CL have been associated with the pathology of lysosomal storage and neurodegenerative diseases. Thus, simultaneous analysis of all PGPLs is important to understand the mechanisms and pathologies of such diseases. In this study, improved separation and MS detection of PGPLs, including their regioisomers, was achieved by the methylation of PGPL. ILM-based relative quantification was applied to lipid extracts from a dopaminergic cell line (SH-SY5Y) treated with drugs commonly used for Parkinson's disease (PD), resulting in the identification of 229 unique PGPLs, including 121 CLs, 71 MLCLs, and 16 Hemi BDP species. The drug treatment induced significant increases in the amount of CLs containing polyunsaturated fatty acyl chains, including 20:4 and 22:6, as well as decreased levels of BMP, Hemi BDP, and BDP species, demonstrating the feasibility of using ILM for the comprehensive and high-speed relative quantification of PGPLs.
Collapse
Affiliation(s)
- Jong Cheol Lee
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Korea
| | - Joon Seon Yang
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Korea
| | - Myeong Hee Moon
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Korea
| |
Collapse
|
28
|
Korf A, Jeck V, Schmid R, Helmer PO, Hayen H. Lipid Species Annotation at Double Bond Position Level with Custom Databases by Extension of the MZmine 2 Open-Source Software Package. Anal Chem 2019; 91:5098-5105. [PMID: 30892876 DOI: 10.1021/acs.analchem.8b05493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, proprietary and open-source bioinformatics software tools have been developed for the identification of lipids in complex biological samples based on high-resolution mass spectrometry data. These existent software tools often rely on publicly available lipid databases, such as LIPID MAPS, which, in some cases, only contain a limited number of lipid species for a specific lipid class. Other software solutions implement their own lipid species databases, which are often confined regarding implemented lipid classes, such as phospholipids. To address these drawbacks, we provide an extension of the widely used open-source metabolomics software MZmine 2, which enables the annotation of detected chromatographic features as lipid species. The extension is designed for straightforward generation of a custom database for selected lipid classes. Furthermore, each lipid's sum formula of the created database can be rapidly modified to search for derivatization products, oxidation products, in-source fragments, or adducts. The versatility will be exemplified by a liquid chromatography-high resolution mass spectrometry data set with postcolumn Paternò-Büchi derivatization. The derivatization reaction was performed to pinpoint the double bond positions in diacylglyceryltrimethylhomoserine lipid species in a lipid extract of a green algae ( Chlamydomonas reinhardtii) sample. The developed Lipid Search module extension of MZmine 2 supports the identification of lipids as far as double bond position level.
Collapse
Affiliation(s)
- Ansgar Korf
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Viola Jeck
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| |
Collapse
|
29
|
|