1
|
Wesdemiotis C, Williams-Pavlantos KN, Keating AR, McGee AS, Bochenek C. Mass spectrometry of polymers: A tutorial review. MASS SPECTROMETRY REVIEWS 2024; 43:427-476. [PMID: 37070280 DOI: 10.1002/mas.21844] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine-tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in-depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas-phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one-step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry.
Collapse
Affiliation(s)
| | | | - Addie R Keating
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Andrew S McGee
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Calum Bochenek
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
2
|
Wysor SK, Marcus RK. Two-dimensional separation of water-soluble polymers using size exclusion and reversed phase chromatography employing capillary-channeled polymer fiber columns. J Chromatogr A 2023; 1701:464051. [PMID: 37209520 DOI: 10.1016/j.chroma.2023.464051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Polymeric materials are readily available, durable materials that have piqued the interest of many diverse fields, ranging from biomedical engineering to construction. The physiochemical properties of a polymer dictate the behavior and function, where large polydispersity among polymer properties can lead to problems; however, current polymer analysis methods often only report results for one particular property. Two-dimensional liquid chromatography (2DLC) applications have become increasingly popular due to the ability to implement two chromatographic modalities in one platform, meaning the ability to simultaneously address multiple physiochemical aspects of a polymer sample, such as functional group content and molar mass. The work presented employs size exclusion chromatography (SEC) and reversed-phase (RP) chromatography, through two coupling strategies: SEC x RP and RP x RP separations of the water-soluble polymers poly(methacrylic acid) (PMA) and polystyrene sulfonic acid (PSSA). Capillary-channeled polymer (C-CP) fiber (polyester and polypropylene) stationary phases were used for the RP separations. Particularly attractive is the fact that they are easily implemented as the second dimension in 2DLC workflows due to their low backpressure (<1000 psi at ∼70 mm sec-1) and fast separation times. In-line multi-angle light scattering (MALS) was also implemented for molecular weight determinations of the polymer samples, with the molecular weight of PMA ranging from 5 × 104 to 2 × 105 g mol-1, while PSSA ranges from 105 to 108 g mol-1. While the orthogonal pairing of SEC x RP addresses polymer sizing and chemistry, this approach is limited by long separation times (80 min), the need for high solute concentrations (PMA = 1.79 mg mL-1 and PSSA = 0.175 mg mL-1 to yield comparable absorbance responses) due to on-column dilution and subsequently limited resolution in the RP separation space. With RP x RP couplings, separation times were significantly reduced (40 min), with lower sample concentrations (0.595 mg mL-1 of PMA and 0.05 mg mL-1 of PSSA) required. The combined RP strategy provided better overall distinction in the chemical distribution of the polymers, yielding 7 distict species versus 3 for the SEC x RP coupling.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
3
|
Li W, Huang J, Zheng L, Liu W, Fan L, Sun B, Su G, Xu J, Zhao M. A fast stop-flow two-dimensional liquid chromatography tandem mass spectrometry and its application in food-derived protein hydrolysates. Food Chem 2023; 406:135000. [PMID: 36463605 DOI: 10.1016/j.foodchem.2022.135000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Food-derived bioactive peptides have many outstanding features like high safety, easy absorption, etc. However, explorations of the peptides are suffering from the limited knowledge of sample composition and low efficiency of separation techniques. In this work, a fast stop-flow two-dimensional liquid chromatography tandem mass spectrometry (2DLC-MS) was designed and constructed in-house. For chromatographic system optimization, the effects of column pairs and fraction transfer volumes on separation performance were studied. The pair of Protein BEH SEC and HSS T3 columns was found of high orthogonality. The peak capacity detected by the optimized 2DLC reached 1165 (for corn protein hydrolysates), indicating high resolving power. Moreover, the number of peptides identified from corn, soybean and casein protein hydrolysates reached as high as 8330, 8925 and 7215, respectively, demonstrating the high potential of the system. This would help reveal the peptide composition and facilitate the research on exploring bioactive peptides from food-derived protein hydrolysates.
Collapse
Affiliation(s)
- Wu Li
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Junhong Huang
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Wanshun Liu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Liqi Fan
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Zhu LW, Xie BY, Liu SZ, Wu YH, Zhang GG, Qiu YK. Development of an On-Line Two-dimensional Normal Phase Liquid Chromatography System for Analysis of Weakly Polar Samples. Chromatographia 2023. [DOI: 10.1007/s10337-022-04230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Yang P, Gao W, Wasserman E. Identification and quantification of polymeric impurity in block copolymer by one-dimensional and two-dimensional liquid chromatography coupled to high-resolution mass spectrometry and evaporative light scattering detector. J Chromatogr A 2023; 1694:463909. [PMID: 36893507 DOI: 10.1016/j.chroma.2023.463909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Identifying and quantifying polymeric impurities in a polymeric material is critical for understanding material quality and performance, but it remains a challenge requiring developing new characterization methods. In this work, a comprehensive two-dimensional liquid chromatography method with simultaneous evaporative light scattering and high-resolution mass spectrometry detection was developed to separate and identify a polymeric impurity in alkyl alcohol-initiated polyethylene oxide/polybutylene oxide diblock copolymer. Size exclusion chromatography was implemented in the first dimension, and gradient reversed-phase liquid chromatography using a large-pore C4 column was applied in the second dimension using an active solvent modulation valve as the interface to minimize the polymer breakthrough. The two-dimensional separation significantly reduced the complexity of the mass spectra data compared to the one-dimensional separation, and the combination of retention time and mass spectral interpretation led to the successful identification of the water-initiated triblock copolymer impurity. This identification was confirmed by comparison with the synthesized triblock copolymer reference material. A one-dimensional LC method with evaporative light scattering detection was employed to quantify the triblock impurity. The impurity level in three samples made with the different processes was determined to be in the range of 9-18 wt% using the triblock reference material as the standard.
Collapse
Affiliation(s)
- Peilin Yang
- The Dow Chemical Company, Analytical Science, 230 Abner Jackson Parkway, Lake Jackson, TX 77566, USA.
| | - Wei Gao
- The Dow Chemical Company, Analytical Science, Collegeville, PA 19426, USA
| | - Eric Wasserman
- The Dow Chemical Company, Home and Personal Care, Collegeville, PA 19426, USA
| |
Collapse
|
6
|
Tang S, Venkatramani CJ. Resolving Solvent Incompatibility in Two-Dimensional Liquid Chromatography with In-Line Mixing Modulation. Anal Chem 2022; 94:16142-16150. [DOI: 10.1021/acs.analchem.2c03572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shijia Tang
- Small Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Cadapakam J. Venkatramani
- Small Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Yang P, Gao W, Pursch M, Luong J. Gaining New Insights in Advanced Polymeric Materials Using Comprehensive Two-Dimensional Liquid Chromatography. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.xh1183h9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two-dimensional liquid chromatography (2D-LC) offers new insights into modern polymeric materials such as biodegradable polymers, polymers made from renewable feedstock, and complex formulated systems. Advances in instrumentation and the development of new modulation techniques enable more combinations of different separation modes. Hyphenation with universal and information-rich detectors further enhances the versatility and flexibility of the analytical strategy. Detailed characterization of copolymer composition heterogeneity and identification of polymeric ingredients in complex consumer products are key highlights of new applications.
Collapse
|
8
|
Meunier DM, Wade JH, Janco M, Cong R, Gao W, Li Y, Mekap D, Wang G. Recent Advances in Separation-Based Techniques for Synthetic Polymer Characterization. Anal Chem 2020; 93:273-294. [DOI: 10.1021/acs.analchem.0c04352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David M. Meunier
- Core R&D, Analytical Science, The Dow Chemical Company, Midland, Michigan 48640, United States
| | - James H. Wade
- Core R&D, Analytical Science, The Dow Chemical Company, Midland, Michigan 48640, United States
| | - Miroslav Janco
- Core R&D, Analytical Science, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Rongjuan Cong
- Packaging and Specialty Plastics, Characterization, The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Wei Gao
- Core R&D, Analytical Science, The Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Yongfu Li
- Core R&D, Analytical Science, The Dow Chemical Company, Midland, Michigan 48640, United States
| | - Dibyaranjan Mekap
- Packaging and Specialty Plastics, Characterization, Dow Benelux, 4542 NM Terneuzen, The Netherlands
| | - Grace Wang
- School of Cinematic Arts, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Yang P, Gao W, Zhang T, Pursch M, Luong J, Sattler W, Singh A, Backer S. Two‐dimensional liquid chromatography with active solvent modulation for studying monomer incorporation in copolymer dispersants. J Sep Sci 2019; 42:2805-2815. [DOI: 10.1002/jssc.201900283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Peilin Yang
- Analytical ScienceThe Dow Chemical Company Collegeville PA USA
| | - Wei Gao
- Analytical ScienceThe Dow Chemical Company Collegeville PA USA
| | - Tianlan Zhang
- Analytical ScienceThe Dow Chemical Company Collegeville PA USA
| | - Matthias Pursch
- Analytical ScienceDow Deutschland Anlagen GmbH Stade Germany
| | - Jim Luong
- Analytical ScienceDow Chemical Canada ULC Fort Saskatchewan AB Canada
| | - Wesley Sattler
- Formulation Science & AutomationThe Dow Chemical Company Collegeville PA USA
| | - Anurima Singh
- Packaging and Specialty PlasticsThe Dow Chemical Company Freeport TX USA
| | - Scott Backer
- Home and Personal CareThe Dow Chemical Company Collegeville PA USA
| |
Collapse
|
10
|
Pirok BWJ, Stoll DR, Schoenmakers PJ. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal Chem 2019; 91:240-263. [PMID: 30380827 PMCID: PMC6322149 DOI: 10.1021/acs.analchem.8b04841] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bob W. J. Pirok
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Peter J. Schoenmakers
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|