1
|
Geng X, Wang Y, Li H, Chen DDY. Characterization of cigarette smokeomics by in situ solid-phase microextraction and confined-space direct analysis in real time mass spectrometry. Talanta 2024; 280:126680. [PMID: 39128317 DOI: 10.1016/j.talanta.2024.126680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Characterization of chemical composition in cigarette smoke is essential for establishing smoke-related exposure estimates. Currently used methods require complex sample preparation with limited capability for obtaining accurate chemical information. We have developed an in situ solid-phase microextraction (SPME) method for online processing of smoke aerosols and directly coupling the SPME probes with confined-space direct analysis in real time (cDART) ion source for high-resolution mass spectrometry (MS) analysis. In a confined space, the substances from SPME probes can be efficiently desorbed and ionized using the DART ion source, and the diffusion and evaporation of volatile species into the open air can be largely avoided. Using SPME-cDART-MS, mainstream smoke (MSS) and side-stream smoke (SSS) can be investigated and the whole analytical protocol can be accomplished in a few min. More than five hundred substances and several classes of compounds were detected and identified. The relative contents of 13 tobacco alkaloids were compared between MSS and SSS. Multivariate data analysis unveiled differences between different types of cigarette smoke and also discovered the characteristic ions. The method is reliable with good reproducibility and repeatability, and has the potential to be quantitative. This study provides a simple and high-efficiency method for smokeomics profiling of complex aerosol samples with in situ online extraction of volatile samples, and direct integration of extracted probes with a modified ambient ionization technique.
Collapse
Affiliation(s)
- Xin Geng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yanqiu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
2
|
Burkhardt T, Sibul F, Pilz F, Scherer G, Pluym N, Scherer M. A comprehensive non-targeted approach for the analysis of biomarkers in exhaled breath across different nicotine product categories. J Chromatogr A 2024; 1736:465359. [PMID: 39303480 DOI: 10.1016/j.chroma.2024.465359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
In the context of the evolving landscape of nicotine consumption, the assessment of biomarkers plays a crucial role in understanding the health impact of different product categories. Exhaled breath (EB) emerges as a promising, non-invasive matrix for biomarker analysis, complementary to conventional urine and plasma data. This study explores distinctive EB biomarker profiles among users of combustible cigarettes (CC), heated tobacco products (HTP), electronic cigarettes (EC), smokeless/oral tobacco (OT), and oral/dermal nicotine products (NRT). We have successfully developed and validated a non-targeted GC-TOF-MS method for the analysis of EB samples across the aforementioned product categories. A total of 66 compounds were identified, with significantly elevated levels in at least one study group. The study found that CC users had higher levels of established VOCs associated with smoking, which supports the proof-of-concept of the method. Breathomic analysis identified increased levels of p-cymene and α-pinene in EC users, while HTP users showed potential biomarker candidates like γ-butyrolactone. This study underscores the utility of EB biomarkers for a comprehensive evaluation of diverse nicotine products. The unique advantages offered by EB analysis position it as a valuable tool for understanding the relationship between exposure and health outcomes.
Collapse
Affiliation(s)
- Therese Burkhardt
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Filip Sibul
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Fabian Pilz
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Gerhard Scherer
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Nikola Pluym
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany
| | - Max Scherer
- Analytisch-Biologisches Forschungslabor GmbH (ABF), Semmelweisstraße 5, Planegg, 82152, Germany.
| |
Collapse
|
3
|
Kachhadia A, Burkhardt T, Scherer G, Scherer M, Pluym N. Development of an LC-HRMS non-targeted method for comprehensive profiling of the exposome of nicotine and tobacco product users - A showcase for cigarette smokers. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124330. [PMID: 39366037 DOI: 10.1016/j.jchromb.2024.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
The global prevalence of electronic cigarettes, heated tobacco products, and other smokeless alternatives has grown significantly in the last ten years. These products have been suggested as combustion-free alternatives for conventional tobacco products like cigarettes, aiming to reduce the negative health impacts associated with smoking. However, the impact of those products on the health and safety of the general population are still unclear, as the absolute exposure from those products has not been thoroughly studied, yet. In this project, a non-targeted LC-HRMS method was developed comprising four different analytical modes for the investigation of the exposure profile in urine of the product users. The method is characterized by its high sensitivity and reproducibility, as shown during method validation. As a proof of concept, we first applied this method to detect significant differences in biomarkers of exposure (BoEs) between smokers and non-smokers. We observed a total of 171 BoEs significantly elevated in smokers, including several well-known biomarkers of smoke exposure like nicotine and its metabolites, mercapturic acid derivatives, and phenolic compounds. Some of the detected biomarkers are present at low ng/mL concentrations in urine, proving the high sensitivity needed for a holistic exploration of the exposome. Moreover, we were able to identify BoEs that have not been reported previously for smoking, such as 2,6-dimethoxyphenol and 7-methyl-1-naphthol glucuronide.
Collapse
Affiliation(s)
- Alpeshkumar Kachhadia
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| | - Therese Burkhardt
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| | - Gerhard Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| | - Max Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| | - Nikola Pluym
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany.
| |
Collapse
|
4
|
Nouri N, Sun N, Hill JE. A feasibility study of sample re-collection in the analysis of selected volatile compounds in breath samples using GC×GC-TOFMS. J Chromatogr A 2024; 1730:465125. [PMID: 38970877 DOI: 10.1016/j.chroma.2024.465125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
In this study, we aimed to assess the feasibility of re-collecting breath samples using the Centri® (Markes International, Bridgend, UK) followed by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) analysis. The work was conducted in two main phases. In the first phase, we evaluated the re-collection performance by analyzing two sets of standards, including a Grob mix primary solution and a standard mixture of 20 selected volatile compounds (VCs) covering different classes of organic species commonly found in breath samples. The intra-day and inter-day precision (reported as relative standard deviation (RSD),%) for the re-collection of the Grob mix primary solution were in the range of 1 % to14 % and 3 % to12 %, respectively. The re-collection accuracy ranged from 78 % to 97 %. The intra-day RSD for the re-collection of the standard mixture of selected VCs was within 20 % for all compounds, except for acetone and nonane. The precision was within 25 % for all compounds, except for nonane, n-hexane, 1,4-dichlorobenzene, and decane, which exhibited less than 36 % RSD. The re-collection accuracy was in the range of 67 % to 129 %. In the second phase of the study, the re-collection performance in breath analysis was evaluated via five repetitive splitting and re-collection of six breath samples obtained from healthy adults, realizing a total of 30 breath analyses. Initially, we evaluated the re-collection performance by considering all features obtained from breath analysis and then focused on the 20 VCs commonly found in breath samples. The re-collection accuracy for total breath features ranged from 86 to 103 %, and the RSDs were in the range of 1.0 % to 10.4 %. For the selected VCs, the re-collection accuracy of all compounds, except for undecane and benzene, was in the range of 71 % to 132 %.
Collapse
Affiliation(s)
- Nina Nouri
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ning Sun
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jane E Hill
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Fu F, Li X, Chen Y, Li L, Dou J, Liang K, Chen Y, Lu Y, Huang Y. Genotoxicity and cytotoxicity evaluation of a heat-not-burn product. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503784. [PMID: 39054007 DOI: 10.1016/j.mrgentox.2024.503784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
'Heat-not-burn' products (HnBP) contain lower levels of harmful substances than traditional cigarettes, but the use of these products warrants further toxicological evaluation. We have compared the cytotoxicity and genotoxicity of a heat-not burn product with conventional cigarettes, in vivo and in vitro. Male Sprague Dawley rats were exposed to mainstream smoke from conventional cigarettes or a HnBP, for 4 or 28 days, followed by isolation of bone marrow polychromatic erythrocytes (PCE) and histological examination of the testes. Chinese hamster lung fibroblast cells were exposed in vitro to total particulate matter from cigarette smoke obtained through Cambridge filters. The cytotoxicity and genotoxicity of total particulate matter were assessed by the neutral red uptake assay, chromosome aberration assay, in vitro micronucleus test, comet assay, and Ames assay. In the short-term exposure rat models, only the conventional-cigarettes group showed a significant increase in the ratio of micronuclei to total PCE. There was no significant difference in rat testis histology in the long-term exposure models. In vitro, in the neutral red uptake assay, the HnBP product showed lower cytotoxicity than conventional cigarettes. Conventional cigarettes showed greater genotoxicity in the chromosome aberration assay, high-dose Ames tests with exogenous metabolic activation, and micronucleus tests. In summary, our results suggest that HnBP have lower cytotoxicity and genotoxicity than conventional cigarettes.
Collapse
Affiliation(s)
- Fudong Fu
- Department of Pulmonary and Critical Care Medicine, and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Li
- Department of Pulmonary and Critical Care Medicine, and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Department of Pulmonary and Critical Care Medicine, and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiexiong Dou
- Sichuan Center for Disease Control and Prevention, Chengdu 610044, China
| | - Kun Liang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu 610101, China; New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu 610101 China
| | - Yexian Chen
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu 610101, China; New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu 610101 China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchuan Huang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu 610101, China; New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu 610101 China.
| |
Collapse
|
6
|
Keyser BM, Leverette R, McRae R, Wertman J, Shutsky T, Jordan K, Szeliga K, Makena P. In vitro toxicological evaluation of glo menthol and non-menthol heated tobacco products. Toxicology 2024; 504:153801. [PMID: 38614204 DOI: 10.1016/j.tox.2024.153801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Heated tobacco products (HTPs) are non-combustible, inhaled tobacco products that generate an aerosol with fewer and lower levels of toxicants, with a potential to reduce risk relative to cigarette smoking. Here, we assessed in vitro toxicological effects of three menthol (glo neo neoCLICK, neo Smooth Menthol and Fresh Menthol) and one non-menthol (neo Smooth Tobacco) variants of glo HTP, along with market comparators for cigarettes and HTPs. Limited chemical characterization of the study products revealed significantly lower levels of acetaldehyde, acrolein, crotanaldehyde and formaldehyde in test samples from HTPs than those from cigarettes. The glo HTPs were non-mutagenic in the bacterial reverse mutagenesis assay. Although, the whole aerosol exposures of glo HTPs were classified as genotoxic in the in vitro micronucleus assay, and cytotoxic in the NRU (monolayer) and MTT (3 dimensional EpiAirway™ tissues) assays, the cigarette comparators were the most toxic study products in each of these assessments. Further, glo HTPs elicited oxidative stress responses only at the highest dose tested, whereas the cigarette comparators were potent inducers of oxidative stress at substantially lower doses in the EpiAirway tissues. The comparator (non-glo) HTP results were similar to the glo HTPs in these assays. Thus, the glo HTPs exhibit substantially lower toxicity compared to cigarettes.
Collapse
Affiliation(s)
- Brian M Keyser
- RAI Services Company; Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA.
| | - Robert Leverette
- RAI Services Company; Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Reagan McRae
- RAI Services Company; Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - John Wertman
- RAI Services Company; Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Tom Shutsky
- RAI Services Company; Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Kristen Jordan
- RAI Services Company; Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Ken Szeliga
- RAI Services Company; Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| | - Patrudu Makena
- RAI Services Company; Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
7
|
An YJ, Kim YH. Assessment of toxicological validity using tobacco emission condensates: A comparative analysis of emissions and condensates from 3R4F reference cigarettes and heated tobacco products. ENVIRONMENT INTERNATIONAL 2024; 185:108502. [PMID: 38368717 DOI: 10.1016/j.envint.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
The tobacco emission condensate, henceforth referred to as "tobacco condensate," plays a critical role in assessing the toxicity of tobacco products. This condensate, derived from tobacco emissions, provides an optimized liquid concentrate for storage and concentration control. Thus, the validation of its constituents is vital for toxicity assessments. This study used tobacco condensates from 3R4F cigarettes and three heated tobacco product (HTP) variants to quantify and contrast organic compounds (OCs) therein. The hazard index (HI) for tobacco emissions and condensates was determined to ascertain the assessment validity. The total particulate matter (TPM) for 3R4F registered at 17,667 μg cig-1, with its total OC (TOC) at 3777 μg cig-1. HTPs' TPM and TOC were 9342 ± 1918 μg cig-1 and 5258 ± 593 μg stick-1, respectively. 3R4F's heightened TPM likely arises from tar, while HTPs' OC concentrations are influenced by vegetable glycerin (2236-2688 μg stick-1) and propylene glycol (589-610 μg stick-1). During the condensation process, a substantial proportion of OCs in 3R4F smoke underwent significant concentration decreases, in contrast to HTPs, where fewer than half of the examined OCs exhibited notable concentration declines. The HI for tobacco emissions exhibited a marginally higher value compared to tobacco condensate, with variations ranging from 7.92% (HTPs) to 18.6% (3R4F), denoting a minimal differential. These observations emphasize the importance of accurate OC recovery techniques to maintain the validity and reliability of toxicity assessments based on tobacco condensates. This study not only deepens the comprehension of chemical behaviors in tobacco products but also establishes a novel benchmark for their toxicity evaluation, with profound implications for public health strategies and consumer protection.
Collapse
Affiliation(s)
- Young-Ji An
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Yong-Hyun Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; School of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
8
|
Lang G, Henao C, Almstetter M, Arndt D, Goujon C, Maeder S. Non-targeted analytical comparison of a heated tobacco product aerosol against mainstream cigarette smoke: does heating tobacco produce an inherently different set of aerosol constituents? Anal Bioanal Chem 2024; 416:1349-1361. [PMID: 38217698 PMCID: PMC10861380 DOI: 10.1007/s00216-024-05126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Smoking-related diseases remain a significant public health concern, and heated tobacco products (HTPs) have emerged as a potential alternative to cigarettes. While several studies have confirmed that HTP aerosols contain lower levels of harmful and potentially harmful constituents (HPHCs) than cigarette smoke, less is known about constituents that are intrinsically higher in HTP aerosols. This study provides a comprehensive comparative assessment of an HTP aerosol produced with Tobacco Heating System 2.2 (THS) and comparator cigarette (CC) smoke aiming at identifying all unique or increased compounds in THS aerosol by applying a broad set of LC-MS and GC × GC-MS methods. To focus on differences due to heating versus burning tobacco, confounding factors were minimized by using the same tobacco in both test items and not adding flavorants. Of all analytical features, only 3.5%-corresponding to 31 distinctive compounds-were significantly more abundant in THS aerosol than in CC smoke. A notable subset of these compounds was identified as reaction products of glycerol. The only compound unique to THS aerosol was traced back to its presence in a non-tobacco material in the test item and not a direct product of heating tobacco. Our results demonstrate that heating a glycerol-containing tobacco substrate to the temperatures applied in THS does not introduce new compounds in the resulting aerosol compared to CC smoke which are detectable with the method portfolio applied in this study. Overall, this study contributes to a better understanding of the chemical composition of HTP aerosols and their potential impact on human health.
Collapse
Affiliation(s)
- Gerhard Lang
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Carlos Henao
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Martin Almstetter
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Daniel Arndt
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Catherine Goujon
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Serge Maeder
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
9
|
Richardot WH, Hamzai L, Ghukasyan T, Dodder NG, Quintana PJ, Matt GE, Sant KE, Lopez-Galvez N, Hoh E. Novel chemical contaminants associated with thirdhand smoke in settled house dust. CHEMOSPHERE 2024; 352:141138. [PMID: 38272136 DOI: 10.1016/j.chemosphere.2024.141138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Thirdhand smoke (THS) is the persistent and toxic residue from tobacco smoke in indoor environments. A comprehensive understanding of the chemical constituents of THS is necessary to assess the risks of long-term exposure and to establish reliable THS tracers. The objective of this study was to investigate compounds associated with THS through nontargeted analysis (NTA) of settled house dust samples from smokers' and non-smokers' homes, using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS). Compounds that were either only present in dust from smokers' homes or that had significantly larger abundance than in non-smokers' homes were termed qualified compounds. We identified 140 qualified compounds, and of these, 42 compounds were tentatively identified by searching matching mass spectra in NIST electron impact (EI) mass spectral library including 20 compounds confirmed with their authentic standards. Among the 42 compounds, 26 compounds were statistically more abundant (p < 0.10) in dust from homes of smokers; seven were tobacco-specific compounds, two of which (nornicotyrine, 3-ethenylpyridine) have not been reported before in house dust. Two compounds, tris (2-chloroethyl) phosphate (a toxic compound used as a flame retardant and reported in tobacco) and propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester (highly abundant and reported in exhaled air of smokers), were found in dust from all smokers' homes and in zero non-smokers' homes, making these potential THS tracers, possibly associated with recent smoking. Benzyl methyl ketone was significantly higher in dust in smokers' homes, and was previously reported not as a product of tobacco but rather as a form of methamphetamine. This compound was recently reported in mainstream tobacco smoke condensate through NTA as well. These identified potential tracers and chemical components of THS in this study can be further investigated for use in developing THS contamination and exposure assessments.
Collapse
Affiliation(s)
- William H Richardot
- School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4162, USA; San Diego State University Research Foundation, 5250 Campanile Dr., San Diego, CA, 92182, USA
| | - Laila Hamzai
- School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4162, USA
| | - Tigran Ghukasyan
- School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4162, USA
| | - Nathan G Dodder
- School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4162, USA; San Diego State University Research Foundation, 5250 Campanile Dr., San Diego, CA, 92182, USA
| | - Penelope Je Quintana
- School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4162, USA
| | - Georg E Matt
- Department of Psychology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4611, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4162, USA
| | - Nicolas Lopez-Galvez
- School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4162, USA; San Diego State University Research Foundation, 5250 Campanile Dr., San Diego, CA, 92182, USA
| | - Eunha Hoh
- School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182-4162, USA.
| |
Collapse
|
10
|
Adeniji A, El-Hage R, Brinkman MC, El-Hellani A. Nontargeted Analysis in Tobacco Research: Challenges and Opportunities. Chem Res Toxicol 2023; 36:1656-1665. [PMID: 37903095 DOI: 10.1021/acs.chemrestox.3c00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Tobacco products are evolving at a pace that has outstripped tobacco control, leading to a high prevalence of tobacco use in the population. Researchers have been tirelessly developing suitable techniques to assess these products' emissions, toxicity, and public health impact. The nonclinical testing of tobacco products to assess the chemical profile of emissions is needed for evidence-based regulations. This testing has largely relied on targeted analytical methods that focus on constituent lists that may fall short in determining the toxicity of newly designed tobacco products. Nontargeted analysis (NTA), or the process of identifying and quantifying compounds within a complex matrix without prior knowledge of its chemical composition, is a promising technique for tobacco regulation, but it is not without challenges. The lack of standardized methods for sample generation, sample preparation, chromatographic separation, compound identification, and data analysis and reporting must be addressed so that the quality and reproducibility of the data generated by NTA can be benchmarked. This review discusses the challenges and highlights the opportunities of NTA in studying tobacco product constituents and emissions.
Collapse
Affiliation(s)
- Ayomipo Adeniji
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Rachel El-Hage
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Marielle C Brinkman
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Ahmad El-Hellani
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| |
Collapse
|
11
|
Dempsey R, Rodrigo G, Vonmoos F, Gunduz I, Belushkin M, Esposito M. Preliminary toxicological assessment of heated tobacco products: A review of the literature and proposed strategy. Toxicol Rep 2023; 10:195-205. [PMID: 36748021 PMCID: PMC9898577 DOI: 10.1016/j.toxrep.2023.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Heated tobacco products (HTP) have become increasingly common in many countries worldwide. The principle of heating tobacco, without combustion, to produce a nicotine-containing aerosol with remarkably reduced levels of other known toxins, compared to combusted tobacco cigarettes, is now well established. As these products are intended as alternatives to traditional combusted products, during the early stages of their development, it is important for manufacturers to ensure that the design of the product does not lead to any unintentionally increased or new risk for the consumer, compared to the traditional products that consumers seek to replace. There is limited guidance from tobacco product regulations concerning the requirements for performing such preliminary toxicological assessments. Here, we review the published literature on studies performed on HTPs in the pursuit of such data, outline a proposed approach that is consistent with regulatory requirements, and provide a logical approach to the preliminary toxicological assessment of HTPs.
Collapse
Affiliation(s)
- Ruth Dempsey
- RD Science Speaks Consultancy Sàrl, Le Mont sur Lausanne, Switzerland
| | - Gregory Rodrigo
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| | - Florence Vonmoos
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| | - Irfan Gunduz
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| | - Maxim Belushkin
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| | - Marco Esposito
- PMI R&D, Philip Morris Products S.A., Rue des Usines 56, 2000 Neuchâtel, Switzerland
| |
Collapse
|
12
|
Gale N, McEwan M, Hardie G, Proctor CJ, Murphy J. Changes in biomarkers of exposure and biomarkers of potential harm after 360 days in smokers who either continue to smoke, switch to a tobacco heating product or quit smoking. Intern Emerg Med 2022; 17:2017-2030. [PMID: 36036342 PMCID: PMC9522838 DOI: 10.1007/s11739-022-03062-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate whether biomarkers of exposure (BoE) and potential harm (BoPH) are modified when smokers either continue to smoke or switch from smoking cigarettes to exclusive use of a tobacco heating product (THP) in an ambulatory setting over the period of a year, and to compare any changes with smokers who quit tobacco use completely and with never smokers' biomarker levels. Participants in this year-long ambulatory study were healthy smokers with a self-reported low intent to quit assigned either to continue smoking or switch to a THP; a group of smokers with a self-reported high intent to quit who abstained from tobacco use; and a group of never smokers. Various BoE and BoPH related to oxidative stress, cardiovascular and respiratory diseases and cancer were assessed at baseline and up to 360 days. Substantial and sustained reductions in BoE levels were found at 360 days for both participants who switched from smoking to THP use and participants who quit smoking, in many cases the reductions being of a similar order for both groups. The never smoker group typically had lower levels of the measured BoEs than either of these groups, and much lower levels than participants who continued to smoke. Several BoPHs were found to change in a favourable direction (towards never smoker levels) over the year study for participants who completely switched to THP or quit, while BoPHs such as soluble intercellular adhesion molecule-1 were found to change in an unfavourable direction (away from never smoker levels) in participants who continued to smoke. Our findings, alongside chemical and toxicological studies undertaken on the THP used in this study, lead to the conclusion that smokers who would have otherwise continued to smoke and instead switch entirely to the use of this THP, will reduce their exposure to tobacco smoke toxicants and as a consequence are reasonably likely to reduce disease risks compared to those continuing to smoke.
Collapse
Affiliation(s)
- Nathan Gale
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK.
| | - Michael McEwan
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| | - George Hardie
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| | | | - James Murphy
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| |
Collapse
|
13
|
Goodall S, Gale N, Thorne D, Hadley S, Prasad K, Gilmour I, Miazzi F, Proctor C. Evaluation of behavioural, chemical, toxicological and clinical studies of a tobacco heated product glo™ and the potential for bridging from a foundational dataset to new product iterations. Toxicol Rep 2022; 9:1426-1442. [PMID: 36561950 PMCID: PMC9764197 DOI: 10.1016/j.toxrep.2022.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Background Tobacco Heating Products (THPs) are tobacco products that heat rather than burn tobacco with temperatures less than 350 °C. Because of this operating principle, they produce substantially fewer and lower levels of tobacco smoke toxicants than combustible cigarette smoke produced when tobacco is burnt, which occurs at much higher temperatures of around 900 °C. This paper analyses data on a THP, glo™, and assesses whether its use would result in reduced health risks compared to the health risks of smoking cigarettes. It also looks at the possibility of bridging datasets across the different variants of the glo™ product. Methods The approach is to consider whether datasets from behavioural, chemical, toxicological and clinical studies provide consistent findings of reductions in toxicant exposure with glo™ use by subjects who switch completely from smoking cigarettes to using glo™ and whether these reductions are similar to those who stop smoking cigarettes without switching to glo™ or any other tobacco or nicotine product. We also examine the similarities and differences of different versions of the glo™ product and benchmark it against a THP from another manufacturer. Results The studies indicate that the use of the glo™ results in substantial and prolonged reductions in toxicant exposure for smokers who switch to glo™ completely. A long-term clinical study shows substantial reductions in toxicant exposure over a period of time, similar to reduction of some biomarkers of exposure found following smoking cessation without switching to glo™ or any other tobacco product, and biomarkers of potential harm trending in a favourable manner for both groups that switch to glo™ and that quit all tobacco and nicotine use. Data suggests that all iterations of glo™ result in substantial reductions in toxicant exposure compared to smoking cigarettes and that bridging across datasets is feasible. Conclusions Given the accumulated scientific data summarised in this paper, and particularly the findings from a long-term clinical study, the data demonstrate that glo™ is a reduced exposure product compared to combustible cigarettes and is reasonably deemed to reduce the risk of smoking-related diseases and supports the conclusion that smokers who would have otherwise continued to smoke and instead switch entirely to THP glo™ use, will reduce their relative risk of developing smoking-related diseases as compared to continued smoking. The extent of reduction in risk compared to continuing to smoke is likely to vary by smoking-related disease and by an individuals' smoking history, other risk factors and an individual's susceptibility to disease. Use of the THP will present some level of increased health risk as compared to cessation of tobacco and nicotine products and will cause dependence. As long as the principles of heat-not-burn are maintained, THP use will result in substantially reduced exposure to smoke toxicants as compared to continued conventional cigarette smoking. It is possible to use bridging or read across to apply these conclusions to new iterations of the glo™ product, extending the utility and validity of the evidence generated through study of prior iterations.
Collapse
|
14
|
Amorós-Pérez A, Cano-Casanova L, Román-Martínez MDC, Lillo-Ródenas MÁ. Solid matter and soluble compounds collected from cigarette smoke and heated tobacco product aerosol using a laboratory designed puffing setup. ENVIRONMENTAL RESEARCH 2022; 206:112619. [PMID: 34971599 DOI: 10.1016/j.envres.2021.112619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
A laboratory setup recently designed has been used to perform puffing experiments in conditions similar to those of Health Canada Intense regime with the purpose of collecting and studying any particulate and/or soluble matter generated as a result of cigarette smoking or Heets use in an IQOS device. Smoke or aerosol can leave deposited matter in several parts of the setup, roughly resembling the interaction with the human body. Samples have been collected from different parts of the setup. For cigarettes, the extracted solutions were yellowish, whereas they remained colourless for Heets. This indicates that the content of both the deposited particulate matter and the amount of soluble compounds were much higher in cigarettes smoke than in Heets aerosol. Not only quantitative differences have been found. Thus, the solid matter collected from cigarettes smoke contains some insoluble fractions mainly composed by C and O, but also by traces of S, K, Ca, Fe, As, Na, Al, Si, and Ba, while the analogous samples from Heets are mainly composed of C and O and are soluble in isopropanol. In addition, in Heets aerosol a relatively low fraction of the detected compounds corresponds to polycyclic aromatic hydrocarbons (PAHs), compared to the percentage of PAHs present in the cigarette smoke. When cigarettes were smoked under a continuous smoking regime (continuous air flow) solid matter was found to be deposited on a part of the setup. This collected solid matter was composed mainly of C and O (being mostly insoluble in water and partially soluble in isopropanol) and contained traces of heavy metals (As, Cd, Cr, Ni, Cu, and Pb).
Collapse
Affiliation(s)
- Ana Amorós-Pérez
- MCMA Group, Department of Inorganic Chemistry and Materials Institute (IUMA). Faculty of Sciences. University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Laura Cano-Casanova
- MCMA Group, Department of Inorganic Chemistry and Materials Institute (IUMA). Faculty of Sciences. University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - María Del Carmen Román-Martínez
- MCMA Group, Department of Inorganic Chemistry and Materials Institute (IUMA). Faculty of Sciences. University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - María Ángeles Lillo-Ródenas
- MCMA Group, Department of Inorganic Chemistry and Materials Institute (IUMA). Faculty of Sciences. University of Alicante, Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
15
|
Sudol PE, Ochoa GS, Cain CN, Synovec RE. Tile-based variance rank initiated-unsupervised sample indexing for comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chim Acta 2022; 1209:339847. [DOI: 10.1016/j.aca.2022.339847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/13/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022]
|
16
|
Lu F, Yu M, Chen C, Liu L, Zhao P, Shen B, Sun R. The Emission of VOCs and CO from Heated Tobacco Products, Electronic Cigarettes, and Conventional Cigarettes, and Their Health Risk. TOXICS 2021; 10:toxics10010008. [PMID: 35051050 PMCID: PMC8781168 DOI: 10.3390/toxics10010008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023]
Abstract
The differences in aerosol composition between new tobacco types (heated tobacco products and electronic cigarettes) and conventional cigarettes have not been systematically studied. In this study, the emissions of volatile organic compounds (VOCs), carbon monoxide (CO), nicotine, and tar from heated tobacco products (HTPs), electronic cigarettes (e-cigarettes) and conventional cigarettes were compared, and their health risks were evaluated by applying the same smoking regime and a loss mechanism of smoking. Twenty VOCs were identified in aerosols from HTPs, 18 VOCs were identified in aerosols from e-cigarettes, and 97 VOCs were identified in aerosols from cigarettes by GC–MS and HPLC analysis. The concentrations of total VOCs (TVOCs) emitted by the three types of tobacco products decreased as follows: e-cigarettes (795.4 mg/100 puffs) > cigarettes (83.29 mg/100 puffs) > HTPs (15.65 mg/100 puffs). The nicotine content was 24.63 ± 2.25 mg/100 puffs for e-cigarettes, 22.94 ± 0.03 mg/100 puffs for cigarettes, and 8.817 ± 0.500 mg/100 puffs for HTPs. When using cigarettes of the same brand, the mass concentrations of VOCs, tar, and CO emitted by HTPs were approximately 81.2%, 95.9%, and 97.5%, respectively, lower than the amounts emitted by cigarettes. The health risk results demonstrated that the noncarcinogenic risk of the three types of tobacco products decreased as follows: cigarettes (3609.05) > HTPs (2449.70) > acceptable level (1) > e-cigarettes (0.91). The lifetime cancer risk (LCR) decreased as follows: cigarettes (2.99 × 10−4) > HTPs (9.92 × 10−5) > e-cigarettes (4.80 × 10−5) > acceptable level (10−6). In general, HTPs and e-cigarettes were less harmful than cigarettes when the emission of VOCs and CO was considered.
Collapse
Affiliation(s)
- Fengju Lu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China;
- Tianjin Key Laboratory of Energy Utilization and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (M.Y.); (L.L.); (P.Z.); (R.S.)
| | - Miao Yu
- Tianjin Key Laboratory of Energy Utilization and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (M.Y.); (L.L.); (P.Z.); (R.S.)
| | - Chaoxian Chen
- Research & Development Department, Shenzhen YouMe Information Technology Co., Ltd., Shenzhen 518000, China;
| | - Lijun Liu
- Tianjin Key Laboratory of Energy Utilization and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (M.Y.); (L.L.); (P.Z.); (R.S.)
| | - Peng Zhao
- Tianjin Key Laboratory of Energy Utilization and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (M.Y.); (L.L.); (P.Z.); (R.S.)
| | - Boxiong Shen
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China;
- Tianjin Key Laboratory of Energy Utilization and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (M.Y.); (L.L.); (P.Z.); (R.S.)
- Correspondence:
| | - Ran Sun
- Tianjin Key Laboratory of Energy Utilization and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (M.Y.); (L.L.); (P.Z.); (R.S.)
| |
Collapse
|
17
|
GC × GC-TOFMS and chemometrics approach for comparative study of volatile compound release by tobacco heating system as a function of temperature. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Dalle-Donne I, Garavaglia ML, Colombo G, Astori E, Lionetti MC, La Porta CAM, Santucci A, Rossi R, Giustarini D, Milzani A. Cigarette smoke and glutathione: Focus on in vitro cell models. Toxicol In Vitro 2020; 65:104818. [PMID: 32135238 DOI: 10.1016/j.tiv.2020.104818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
Abstract
Cigarette smoke (CS) is one of the most important preventable risk factors for the development of respiratory diseases, cardiovascular diseases, stroke, and various types of cancer. Due to its high intracellular concentration and central role in maintaining the cellular redox state, glutathione (GSH) is one of the key players in several enzymatic and non-enzymatic reactions necessary for protecting cells against CS-induced oxidative stress. A plethora of in vitro cell models have been used over the years to assess the effects of CS on intracellular GSH and its disulphide forms, i.e. glutathione disulphide (GSSG) and S-glutathionylated proteins. In this review, we described the effects of cell exposure to CS on cellular GSH and formation of its oxidized forms and adducts (GSH-conjugates). We also discussed the limitations and relevance of in vitro cell models of exposure to CS and critically assessed the congruence between smokers and in vitro cell models. What emerges clearly is that results obtained in vitro should be interpreted with extreme caution, bearing in mind the limitations of the specific cell model used. Despite this, in vitro cell models remain important tools in the assessment of CS-induced oxidative damage.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy.
| | - Maria L Garavaglia
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Maria C Lionetti
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| |
Collapse
|
19
|
Klupinski TP, Strozier ED, Makselan SD, Buehler SS, Peters EN, Lucas EA, Casbohm JS, Friedenberg DA, Landgraf AJ, Frank AJ, Mikheev VB, Ivanov A. Chemical characterization of marijuana blunt smoke by non-targeted chemical analysis. Inhal Toxicol 2020; 32:177-187. [PMID: 32408835 DOI: 10.1080/08958378.2020.1765052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Background: Marijuana blunts, which are tobacco cigar wrappers filled with marijuana, are commonly smoked in the US as a means of cannabis use. The use of marijuana blunts presents toxicity concerns because the smoke contains both marijuana-related and tobacco-related chemicals. Thus, it is important to understand the chemical composition of mainstream smoke (MSS) from marijuana blunts. This study demonstrates the ability to detect and identify chemical constituents exclusively associated with blunt MSS in contrast to tobacco cigar MSS (designated as 'new exposures') through non-targeted chemical analysis.Methods: Samples collected separately from blunt MSS and tobacco cigar MSS were analyzed using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS).Results and Discussion: Two new exposures, which likely represent only a subset of all new exposures, were identified by evaluating the data from thousands of detected signals and then confirming selected compound identities in analyses using authentic chemical standards. The two confirmed new exposures, mellein and 2-phenyl-2-oxazoline, are not cannabinoids and, to the best of our knowledge, have not been previously reported in association with cannabis, tobacco, or smoke of any kind. In addition, we detected and quantified three phenols (2-, 3-, and 4-ethylphenol) in blunt MSS. Given the toxicity of phenols, quantifying the levels of other phenols could be pursued in future research on blunt MSS.Conclusion: This study shows the power and utility of GC × GC-TOFMS as a methodology for non-targeted chemical analysis to identify new chemical exposures in blunt MSS and to provide data to guide further investigations of blunt MSS.
Collapse
|
20
|
Amaral MSS, Nolvachai Y, Marriott PJ. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal Chem 2019; 92:85-104. [DOI: 10.1021/acs.analchem.9b05412] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle S. S. Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Yada Nolvachai
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Li MY, Bai FY, Pan XM. Theoretical study of H-atom abstraction reactions from CH3CH2OCH2CH3, CHF2CF2OCH2CF3 and CF3CH2OCH3 by NO3 radical & subsequent degradation. J Mol Graph Model 2019; 93:107453. [DOI: 10.1016/j.jmgm.2019.107453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/28/2022]
|
22
|
Aridgides DS, Mellinger DL, Armstrong DA, Hazlett HF, Dessaint JA, Hampton TH, Atkins GT, Carroll JL, Ashare A. Functional and metabolic impairment in cigarette smoke-exposed macrophages is tied to oxidative stress. Sci Rep 2019; 9:9624. [PMID: 31270372 PMCID: PMC6610132 DOI: 10.1038/s41598-019-46045-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Cigarette smoke inhalation exposes the respiratory system to thousands of potentially toxic substances and causes chronic obstructive pulmonary disease (COPD). COPD is characterized by cycles of inflammation and infection with a dysregulated immune response contributing to disease progression. While smoking cessation can slow the damage in COPD, lung immunity remains impaired. Alveolar macrophages (AMΦ) are innate immune cells strategically poised at the interface between lungs, respiratory pathogens, and environmental toxins including cigarette smoke. We studied the effects of cigarette smoke on model THP-1 and peripheral blood monocyte derived macrophages, and discovered a marked inhibition of bacterial phagocytosis which was replicated in primary human AMΦ. Cigarette smoke decreased AMΦ cystic fibrosis transmembrane conductance regulator (CFTR) expression, previously shown to be integral to phagocytosis. In contrast to cystic fibrosis macrophages, smoke-exposed THP-1 and AMΦ failed to augment phagocytosis in the presence of CFTR modulators. Cigarette smoke also inhibited THP-1 and AMΦ mitochondrial respiration while inducing glycolysis and reactive oxygen species. These effects were mitigated by the free radical scavenger N-acetylcysteine, which also reverted phagocytosis to baseline levels. Collectively these results implicate metabolic dysfunction as a key factor in the toxicity of cigarette smoke to AMΦ, and illuminate avenues of potential intervention.
Collapse
Affiliation(s)
- Daniel S Aridgides
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane L Mellinger
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - David A Armstrong
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Haley F Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA
| | - John A Dessaint
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA
| | - Graham T Atkins
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - James L Carroll
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Alix Ashare
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA. .,Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|