1
|
Xu L, Hu W, Luo X, Zhang J. Covalent organic framework in situ grown on the metal-organic framework as fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons in tea. Mikrochim Acta 2023; 190:344. [PMID: 37542665 DOI: 10.1007/s00604-023-05915-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 08/07/2023]
Abstract
A novel MIL-88-NH2@COF composite was produced by in situ growth of covalent organic framework (COF) on the metal-organic framework (MOF) surface. To obtain a coating fiber for solid-phase microextraction (SPME), the MIL-88-NH2@COF composite physically adhered to the stainless steel wire. Combined with gas chromatography-flame ionization detection (GC-FID), various analytes such as chlorophenols (CPs), phthalates (PAEs), and polycyclic aromatic hydrocarbons (PAHs) were extracted and determined to evaluate the extraction performance of MIL-88-NH2@COF coated fibers and explore their extraction mechanism. This composite exhibit excellent extraction performance and adsorption capacity for various analytes, especially for PAHs with enrichment factor up to 9858. The SPME-GC-FID method based on MIL-88-NH2@COF fiber was established for the determination of five PAHs after the main extraction conditions were optimized. Under optimal conditions, the proposed technique showed a wide linear range (1-150 ng mL-1) with a low limit of detection (0.019 ng mL-1) and a high coefficient of determination (R2 > 0.99). The developed SPME-GC-FID method was used to determine PAHs in green tea and black tea samples, with good recoveries of 51.70-103.64% and 68.56-103.64%, respectively. It is worth mentioning that this is the first time MIL-88-NH2@COF composites have been prepared and applied to SPME. The preparation method of the composite provides a new idea in adsorbent preparation, which will contribute to the field of SPME.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Wei Hu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| |
Collapse
|
2
|
Chen T, Wang S, Zong X, Li B, Shu Y, Di X, Zhu W, Song G, Jiang J. Preparation and application of sulfated lily polysaccharide bridged polyhedral oligomeric silsesquioxane hybrid organosilicas as stationary phase. J Chromatogr A 2023; 1691:463822. [PMID: 36709551 DOI: 10.1016/j.chroma.2023.463822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Periodic mesoporous organosilicas (PMO) hydrophilic microspheres were synthesized by co-condensation of sulfated polysaccharide from Lilum lancifolium Thunb. bridged silane (SLLTPBS) and polyhedral oligomeric silsesquioxane (POSS) as stationary phase (PMO(SLLTP-POSS)) for per aqueous liquid chromatography (PALC), which would overcome the disadvantages of using a large amount of acetonitrile on the hydrophilic interaction liquid chromatography (HILIC) columns. Average particle size of PMO (SLLTP-POSS) microspheres was 4.9 μm, which was suitable for stationary phase. The retention mechanism of the stationary phase in PALC was mainly hydrophobic interactions and also included some ion-exchange interactions and electrostatic interactions. The acid-base resistance was greatly improved compared to the C18 column. The PMO(SLLTP-POSS) column under PALC mode had increased the resolution when separating some hydrophilic compounds such as eight organic acids and eleven sweeteners compared with the C18 column and HILIC column. The new column was more efficient than the HILIC columns. Additionally, a PALC-triple quadrupole mass spectrometry approach for the simultaneous identification of the eleven sweeteners was developed. The averagere coveries of the eleven compounds were 70.20%-91.33% with the relative standard deviation (RSD) range of 1.74% to 4.27%. The results showed good precision and accuracy of the method.
Collapse
Affiliation(s)
- Tong Chen
- State key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China; Comprehensive Technology Centre, Zhenjiang Customs District P. R. of China, Zhenjiang, 212008, China.
| | - Shuya Wang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Xufang Zong
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212003, China.
| | - Bingxiang Li
- Comprehensive Technology Centre, Zhenjiang Customs District P. R. of China, Zhenjiang, 212008, China
| | - Ye Shu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Xinyuan Di
- Comprehensive Technology Centre, Zhenjiang Customs District P. R. of China, Zhenjiang, 212008, China; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Wanning Zhu
- Comprehensive Technology Centre, Zhenjiang Customs District P. R. of China, Zhenjiang, 212008, China
| | - Guangsan Song
- Comprehensive Technology Centre, Zhenjiang Customs District P. R. of China, Zhenjiang, 212008, China
| | - Jun Jiang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Jiang S, Wan S, Du H, Lin C, Lin X. Facile one-step synthesis of graphene oxide/polyhedral oligomeric silsesquioxane composite-coated fiber for high-efficiency solid-phase microextraction of polycyclic musks. Anal Chim Acta 2022; 1234:340509. [DOI: 10.1016/j.aca.2022.340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/01/2022]
|
4
|
Rapidly covalent immobilization of β-ketoenamine-linked covalent organic framework on fibers for efficient solid-phase microextraction of phthalic acid esters. Talanta 2022; 243:123380. [DOI: 10.1016/j.talanta.2022.123380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
|
5
|
Song N, Tian Y, Luo Z, Dai J, Liu Y, Duan Y. Advances in pretreatment and analysis methods of aromatic hydrocarbons in soil. RSC Adv 2022; 12:6099-6113. [PMID: 35424557 PMCID: PMC8981609 DOI: 10.1039/d1ra08633b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Benzene compounds that are prevalent in the soil as organic pollutants mainly include BTEX (benzene, toluene, ethylbenzene, and three xylene isomers) and PAHs (polycyclic aromatic hydrocarbons). These pose a severe threat to many aspects of human health. Therefore, the accurate measurement of BTEX and PAHs concentrations in the soil is of great importance. The samples for analysis of BTEX and PAHs need to be suitable for the various detection methods after pretreatment, which include Soxhlet extraction, ultrasonic extraction, solid-phase microextraction, supercritical extraction, and needle trap. The detection techniques mainly consist of gas chromatography (GC), mass spectrometry (MS), and online sensors, and provide comprehensive information on contaminants in the soil. Their performance is evaluated in terms of sensitivity, selectivity, and recovery. Recently, there has been rapid progress in the pretreatment and analysis methods for the quantitative and qualitative analyses of BTEX and PAHs. Therefore, it is necessary to produce a timely and in-depth review of the emerging pretreatment and analysis methods, which is unfortunately absent from the recent literature. In this work, state-of-art extraction techniques and analytical methods have been summarized for the determination of BTEX and PAHs in soil, with a particular focus on the potential and limitations of the respective methods for different aromatic hydrocarbons. Accordingly, the paper will describe the basic methodological knowledge, as well as the recent advancement of pretreatment and analysis methods for samples containing BTEX and PAHs.
Collapse
Affiliation(s)
- Na Song
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Jianxiong Dai
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yan Liu
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| |
Collapse
|
6
|
Yu Q, Ma W, Zhang W, Chen H, Ding Q, Guo Y, Yang J, Zhang L. In situ room-temperature rapidly fabricated imine-linked covalent organic framework coated fibers for efficient solid-phase microextraction of pyrethroids. Anal Chim Acta 2021; 1181:338886. [PMID: 34556223 DOI: 10.1016/j.aca.2021.338886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 01/09/2023]
Abstract
A facile and rapid strategy for preparation of covalent organic framework (COF) coated fibers at ambient temperature is urgently needed for solid-phase microextraction (SPME) technology. In this work, an in situ room-temperature rapid growth strategy was developed to high-efficiently fabricate imine-linked COF (TPB-DVA) coated fibers in as little as 30 min at room temperature, and the thickness of the coating reached 9 μm. The prepared TPB-DVA coated fiber offer high thermal and chemical stability, and outstanding service lifetime. Moreover, we generalize this strategy to other two imine-linked COF (TPB-DMTP and TFPB-TAPB) coated fibers and the fibers were fabricated at room temperature for 3 h and 12 h, respectively, which demonstrate the applicability of this strategy. Subsequently, a SPME-GC-MS/MS analytical method was developed for trace pyrethroids (PYs) detection, which exhibited high enhancement factors (EFs, 2700-13195), wide linear range (0.08-800 ng L-1), low limits of detection (LODs, 0.02-0.20 ng L-1), and good repeatability (RSD ≤ 8.5%, n = 6). Furthermore, the developed analytical method was applied to tea samples and trace PYs (1.31-4.32 ng L-1) were found with satisfactory recovery (80.2-119.8%). The above results demonstrated that the feasibility of the developed strategy for the facile and rapid fabrication of imine-linked COF coated fibers.
Collapse
Affiliation(s)
- Qidong Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wende Ma
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yuheng Guo
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jiangfan Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
7
|
Guo Y, Zhang W, Chen H, Ding Q, Li Q, Zhang L. In situ fabrication of nitrogen doped graphitic carbon networks coating for high-performance extraction of pyrethroid pesticides. Talanta 2021; 233:122542. [PMID: 34215045 DOI: 10.1016/j.talanta.2021.122542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The tailor-prepare solid phase microextraction (SPME) coatings with stable and excellent properties to effectively extract analytes from sample matrix still remains a challenge. Herein, a nitrogen doped graphitic carbon networks (NG-CNTW) coated fiber was fabricated by direct carbonization of nanosized ZIF-67 crystals (nano-ZIF-67) that grown on stainless steel wire. The NG-CNTW coated fiber coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) was applied for enrichment and determination of pyrethroids. The NG-CNTW coating exhibited high surface area and hierarchical porous structures that facilitate diffusion and accessibility of target molecules. Simultaneously, the nitrogen doped and highly graphitic structures endow the coating with high adsorption affinity for aromatic compounds. Under optimum conditions, the SPME-GC-MS/MS method presented wide range of linearity performance (0.08-200.0 ng g-1), low limits of detection (0.02-0.5 ng g-1) and good repeatability (RSD < 9.6%) for 8 kinds of pyrethroids. Furthermore, the proposed method was successfully applied in the determination of pyrethroids in grape and cauliflower samples, as the results were in the range of 3.16-15.06 ng g-1and 2.08-9.29 ng g-1, respectively. This work not only provides a new method by fabricating carbon nanomaterial coatings in situ derived from MOFs, but also shows great potential of MOFs derivative materials in environmental analysis field.
Collapse
Affiliation(s)
- Yuheng Guo
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Division of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Li
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
8
|
Porphyrin-based covalent organic framework coated stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in water and soil samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Zhou Y, Duan L, Huang Y, Liu Y, Wang L, Qiao X. Ionic Liquid 1-Vinyl-3-dodecylimidazole Bromide Embedded Hybrid Monolithic Column and Its Versatile Post-modification with Amino Acids. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00171-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Feng J, Feng J, Han S, Ji X, Li C, Sun M. Triazine-based covalent porous organic polymer for the online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons prior to high-performance liquid chromatography-diode array detection. J Chromatogr A 2021; 1641:462004. [PMID: 33640808 DOI: 10.1016/j.chroma.2021.462004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
A triazine-based covalent organic porous polymer (COP) was synthesized from the monomers 1,3,5-triphenylbenzene and tricyanogen chloride via the Friedel-Crafts reaction and characterized in detail using Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscopy, which confirmed that the COP had a rough surface and suitable extraction site. It was then employed in in-tube solid-phase microextraction combined with a high-performance liquid chromatography-diode array detector. The COP adsorbent was evaluated with different types of analyte, including estrogens, polycyclic aromatic hydrocarbons (PAHs), and plasticizers. The COP produced its best performance with PAHs. In order to obtain the highest extraction efficiency for PAHs, the main influential factors were optimized. Furthermore, a sensitive analytical method was established with the limits of detection of 0.004-0.010 µg L-1, high enrichment factor of 1110-2763, and wide linear ranges (0.013-20.0 µg L-1, 0.016-20.0 µg L-1 and 0.033-20.0 µg L-1). The relative standard deviation in intra-day and inter-day tests was also controlled to be within 0.3-3.1%. The proposed method was employed in the online detection of trace PAHs in real water samples, with satisfactory results obtained.
Collapse
Affiliation(s)
- Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
11
|
A polyhedral oligomeric silsesquioxanes/dual ligands-based magnetic adsorbent for effective extraction of aflatoxins in cereals via multiple interactions. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Ji X, Feng J, Li C, Han S, Sun M, Feng J, Sun H, Fan J, Guo W. Application of biocharcoal aerogel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. J Sep Sci 2020; 43:4364-4373. [PMID: 32979006 DOI: 10.1002/jssc.202000910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
A facile method was introduced for preparing a biocharcoal aerogel, which was derived from pomelo peel as the only raw material. The inner spongy layer of pomelo peel was freeze-dried for maintaining three-dimensional structure and then carbonized under high temperature and oxygen-limited conditions. The morphological structure and graphitization degree of biocharcoal aerogel were characterized using a scanning electron microscope and Raman spectrum. After sifting and grinding, the biocharcoal aerogel as an adsorbent was coated onto the surface of stainless steel wires. Through placing the wires into a polyetheretherketone tube, the in-tube solid-phase microextraction device was obtained. Coupled with high-performance liquid chromatography, it exhibited good extraction performance for polycyclic aromatic hydrocarbons, then an online analytical method was established with low limits of detection (0.005-0.050 ng/mL), wide linear ranges (0.017-15 ng/mL) with superior correlation coefficients higher than 0.9990, high enrichment factors (1128-3425), and acceptable intra- and inter-day repeatabilities (relative standard deviations ≤ 6.7%, n = 3). The method was applied to detect polycyclic aromatic hydrocarbons in bottled water samples, environmental water samples, and soft drinks with satisfactory recoveries (83.3-120.9%). This research not only developed a new carbon aerogel but also evaluated its adsorption performance in sample preparation.
Collapse
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Jing Fan
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, P. R. China
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| |
Collapse
|
13
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Bianchi F, Pankajakshan A, Fornari F, Mandal S, Pelagatti P, Bacchi A, Mazzeo PP, Careri M. A zinc mixed-ligand microporous metal-organic framework as solid-phase microextraction coating for priority polycyclic aromatic hydrocarbons from water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104646] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Feng J, Loussala HM, Han S, Ji X, Li C, Sun M. Recent advances of ionic liquids in sample preparation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115833] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|