1
|
Qian R, Sun C, Bai T, Yan J, Cheng J, Zhang J. Recent advances and challenges in the interaction between myofibrillar proteins and flavor substances. Front Nutr 2024; 11:1378884. [PMID: 38725578 PMCID: PMC11079221 DOI: 10.3389/fnut.2024.1378884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myofibrillar proteins are an important component of proteins. Flavor characteristics are the key attributes of food quality. The ability of proteins to bind flavor is one of their most fundamental functional properties. The dynamic balance of release and retention of volatile flavor compounds in protein-containing systems largely affects the sensory quality and consumer acceptability of foods. At present, research on flavor mainly focuses on the formation mechanism of flavor components, while there are few reports on the release and perception of flavor components. This review introduces the composition and structure of myofibrillar proteins, the classification of flavor substances, the physical binding and chemical adsorption of myofibrillar proteins and volatile flavor substances, as well as clarifies the regulation law of flavor substances from the viewpoint of endogenous flavor characteristics and exogenous environment factors, to provide a theoretical reference for the flavor regulation of meat products.
Collapse
Affiliation(s)
- Rong Qian
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chang Sun
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Yan
- Sichuan Laochuan East Food Co., Ltd., Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
2
|
Coverdale JPC, Polepalli S, Arruda MAZ, da Silva ABS, Stewart AJ, Blindauer CA. Recent Advances in Metalloproteomics. Biomolecules 2024; 14:104. [PMID: 38254704 PMCID: PMC10813065 DOI: 10.3390/biom14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Interactions between proteins and metal ions and their complexes are important in many areas of the life sciences, including physiology, medicine, and toxicology. Despite the involvement of essential elements in all major processes necessary for sustaining life, metalloproteomes remain ill-defined. This is not only owing to the complexity of metalloproteomes, but also to the non-covalent character of the complexes that most essential metals form, which complicates analysis. Similar issues may also be encountered for some toxic metals. The review discusses recently developed approaches and current challenges for the study of interactions involving entire (sub-)proteomes with such labile metal ions. In the second part, transition metals from the fourth and fifth periods are examined, most of which are xenobiotic and also tend to form more stable and/or inert complexes. A large research area in this respect concerns metallodrug-protein interactions. Particular attention is paid to separation approaches, as these need to be adapted to the reactivity of the metal under consideration.
Collapse
Affiliation(s)
- James P. C. Coverdale
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston B15 2TT, UK;
| | | | - Marco A. Z. Arruda
- Institute of Chemistry, Department of Analytical Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; (M.A.Z.A.); (A.B.S.d.S.)
| | - Ana B. Santos da Silva
- Institute of Chemistry, Department of Analytical Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; (M.A.Z.A.); (A.B.S.d.S.)
| | - Alan J. Stewart
- School of Medicine, University of St. Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
3
|
Yan X, Zhou Y, Li H, Jiang G, Sun H. Metallomics and metalloproteomics. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:53-76. [DOI: 10.1016/b978-0-12-823144-9.00060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Tang Y, Liu L, Nong Q, Guo H, Zhou Q, Wang D, Yin Y, Shi J, He B, Hu L, Jiang G. Sensitive determination of metalloprotein in salt-rich matrices by size exclusion chromatography coupled with inductively coupled plasma-mass spectrometry. J Chromatogr A 2022; 1677:463303. [DOI: 10.1016/j.chroma.2022.463303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
|
5
|
Shahid K, Srivastava V, Sillanpää M. Protein recovery as a resource from waste specifically via membrane technology-from waste to wonder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10262-10282. [PMID: 33442801 PMCID: PMC7884582 DOI: 10.1007/s11356-020-12290-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/29/2020] [Indexed: 05/31/2023]
Abstract
Economic growth and the rapid increase in the world population has led to a greater need for natural resources, which in turn, has put pressure on said resources along with the environment. Water, food, and energy, among other resources, pose a huge challenge. Numerous essential resources, including organic substances and valuable nutrients, can be found in wastewater, and these could be recovered with efficient technologies. Protein recovery from waste streams can provide an alternative resource that could be utilized as animal feed. Membrane separation, adsorption, and microbe-assisted protein recovery have been proposed as technologies that could be used for the aforementioned protein recovery. This present study focuses on the applicability of different technologies for protein recovery from different wastewaters. Membrane technology has been proven to be efficient for the effective concentration of proteins from waste sources. The main emphasis of the present short communication is to explore the possible strategies that could be utilized to recover or restore proteins from different wastewater sources. The presented study emphasizes the applicability of the recovery of proteins from various waste sources using membranes and the combination of the membrane process. Future research should focus on novel technologies that can help in the efficient extraction of these high-value compounds from wastes. Lastly, this short communication will evaluate the possibility of integrating membrane technology. This study will discuss the important proteins present in different industrial waste streams, such as those of potatoes, poultry, dairy, seafood and alfalfa, and the possible state of the art technologies for the recovery of these valuable proteins from the wastewater.
Collapse
Affiliation(s)
- Kanwal Shahid
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| | - Varsha Srivastava
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| |
Collapse
|
6
|
Chen Z, Zhang Z, Zhang C, Xiao Y. A new ladder-type silver(I) coordination polymer with 4,4'-bipyridine and 4-[(4-carboxybenzyloxy)methyl]benzoate ligands: synthesis, crystal structure, fluorescence properties and Hirshfeld surface analysis. Acta Crystallogr C 2020; 76:952-957. [PMID: 33016265 DOI: 10.1107/s2053229620011882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
A novel ladder-type coordination polymer (CP), poly[(μ-4,4'-bipyridine-κ2N:N'){μ-4-[(4-carboxybenzyloxy)methyl]benzoato-κO}silver(I)](Ag-Ag), [Ag(C16H13O5)(C10H8N2)]n or [Ag(HL)(4,4'-bpy)]n {H2L is 4,4'-[oxybis(methylene)]dibenzoic acid and 4,4'-bpy is 4,4'-bipyridine}, was synthesized using hydrothermal methods. The complex was characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction, and is a ladder-type CP which exhibits an obvious Ag-Ag interaction. The legs of the ladder are formed by parallel 4,4'-bipy ligands and silver ions, and the rungs are constructed by Ag-Ag interactions. A Hirshfeld surface analysis was carried out and is discussed in detail. The complex also displays favourable fluorescence properties.
Collapse
Affiliation(s)
- Zhao Chen
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guangxi Mining and Environmental Sciences Laboratory Center, Guilin 541004, People's Republic of China
| | - Zilong Zhang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guangxi Mining and Environmental Sciences Laboratory Center, Guilin 541004, People's Republic of China
| | - Chong Zhang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guangxi Mining and Environmental Sciences Laboratory Center, Guilin 541004, People's Republic of China
| | - Yu Xiao
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guangxi Mining and Environmental Sciences Laboratory Center, Guilin 541004, People's Republic of China
| |
Collapse
|