1
|
Zhang Y, Chen Q, Wang L, Geng H, Zhu Z, Lv C, Zhao Y, Wang X, Sun C, Chen P, Zhang C. Spatially-resolved characterization of the metabolic and N-glycan alterations in colorectal cancer using matrix-assisted laser desorption/ionization mass spectrometry imaging. RSC Adv 2025; 15:1838-1845. [PMID: 39839237 PMCID: PMC11747861 DOI: 10.1039/d4ra08100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
Colorectal cancer is the second leading cause of cancer-related deaths worldwide, and its development typically involves complex metabolic reprogramming. By mapping the spatial distributions of metabolites and N-glycans in heterogeneous colorectal cancer tissues, we can elucidate cancer-associated metabolic and N-glycan changes. Herein, we combine mass spectrometry imaging-based metabolomics and N-glycomics to characterize the spatially resolved reprogramming of metabolites and N-glycans in colorectal cancer tissues. The metabolic characteristics of different regions of colorectal cancer were evaluated through the utilization of orthogonal partial least squares discriminant analysis. In combination with metabolic pathway enrichment analysis, significant alterations were identified in the fatty acid metabolism, arginine and proline metabolism of colorectal cancer. Cancer cell regions exhibited a marked upregulation of saturated fatty acids, monounsaturated fatty acids, polyamines, and histidine. Additionally, we discovered that the high-mannose N-glycans were predominantly distributed in tumor tissue regions, whereas complex N-glycans were more commonly found in the normal tissue regions adjacent to the tumor. Such findings provide new insights into the spatial signatures of metabolites and N-glycans in colorectal cancer, thereby offering a crucial basis for the diagnosis of colorectal cancer and potential vulnerabilities that might be targeted for cancer therapy.
Collapse
Affiliation(s)
- Yaqi Zhang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Qiangjun Chen
- Department of Breast and Thyroid Surgery, Yi Du Central Hospital of Weifang, Shangdong Province No. 5168 Jiangjunshan Road Weifang 262500 China
| | - Lei Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Haoyuan Geng
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Zihan Zhu
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Cancan Lv
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Yisheng Zhao
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Xiao Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Chenglong Sun
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Panpan Chen
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Chao Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University Jinan 250012 China
| |
Collapse
|
2
|
Zhang L, Wang W, Yang Y, Li P, Liu X, Zhu W, Yang W, Wang S, Lin Y, Liu X. Expression and immobilization of novel N-glycan-binding protein for highly efficient purification and enrichment of N-glycans, N-glycopeptides, and N-glycoproteins. Anal Bioanal Chem 2024; 416:6859-6868. [PMID: 39412696 DOI: 10.1007/s00216-024-05583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024]
Abstract
Comprehensive and selective enrichment of N-glycans, N-glycopeptides, and N-glycoproteins prior to analysis is of great significance in N-glycomics research, reducing sample complexity, removing impurity interference, increasing sample abundance and enhancing signal intensity. However, only an Fbs1 (F-box protein that recognizes sugar chain 1) GYR variant (Fg) can enrich these N-glycomolecules solely due to its substantial binding affinity for the core pentasaccharide motif of N-glycans. Stationary phase separation is commonly used to enrich N-glycomolecules efficiently. Herein, DNA encoding the Fg was cloned into pGEX-4T-1, and the protein was expressed with a GST tag, which facilitates the convenient and efficient immobilization of recombinant GST-tagged Fg to GSH agarose resin. The yield of the GST-tagged Fg reached to 0.05 g/L after optimization of the induction condition, and the purified protein exhibited good identification ability and excellent stability for months. In particular, the immobilized GST-tagged Fg can enrich N-glycans released by PNGase F and capture derivatized N-glycans possessing an intact terminal N-acetyl glucosamine (GlcNAc). Validation of immobilized GST-tagged Fg with standard N-glycopeptides and N-glycoproteins revealed its high loading capacity, sensitivity, and selectivity. The novel immobilized GST-tagged Fg is a convenient and efficient enrichment material specific for N-glycans, N-glycopeptides, and N-glycoproteins, suggesting excellent performance and prospects for industrial application.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Wenhui Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueqin Yang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Pengjie Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenjie Zhu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Yang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Yawei Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Zhang L, Wang W, Yang Y, Liu X, Zhu W, Pi L, Liu X, Wang S. Spontaneous and site-specific immobilization of PNGase F via spy chemistry. RSC Adv 2023; 13:28493-28500. [PMID: 37771922 PMCID: PMC10523939 DOI: 10.1039/d3ra04591a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Protein N-glycosylation plays a critical role in a wide range of biological processes, and aberrant N-glycosylation is frequently associated with various pathological states. For global N-glycosylation analysis, N-glycans are typically released from glycoproteins mediated by endoglycosidases, primarily peptide N-glycosidase F (PNGase F). However, conventional N-glycan release by in-solution PNGase F is time-consuming and nonreusable. Although some immobilization methods can save time and reduce the enzyme dosage, including affinity interaction and covalent binding, the immobilized PNGase F by these traditional methods may compromises the immobilized enzyme's stability and biofunction. Therefore, a new approach is urgently needed to firmly and steadily immobilize PNGase F. To meet this demand, we have developed a spontaneous and site-specific way to immobilize PNGase F onto magnetic nanoparticles via Spy chemistry. The magnetic nanoparticles were synthesized and modified with SpyTag as a solid surface. The PNGase F fused with SpyCatcher can then be site-specifically and covalently immobilized onto this solid phase, forming a firm isopeptide bond via self-catalysis between the SpyTag peptide and SpyCatcher. Importantly, the immobilization process mediated by mild spy chemistry does not result in PNGase F inactivation; and allows immobilized PNGase F to rapidly release various types of glycans (high-mannose, sialylated, and hybrid) from glycoproteins. Moreover, the immobilized PNGase F exhibited good deglycosylation activity and facilitated good reusability in consecutive reactions. Deglycosylation of clinical samples was completed by the immobilized PNGase F as fast as several minutes.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University Wuhan 430079 China
| | - Wenhui Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Yueqin Yang
- Exercise Immunology Center, Wuhan Sports University Wuhan 430079 China
| | - Xiang Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430016 China
| | - Wenjie Zhu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Lingrui Pi
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University Wuhan 430079 China
| |
Collapse
|
5
|
Shi N, Zheng M, Wu X, Chen N, Jiang L, Chang B, Lu F, Liu F. Construction and Catalytic Study of Affinity Peptide Orientation and Light Crosslinking Immobilized Sucrose Isomerase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13401-13408. [PMID: 37647235 DOI: 10.1021/acs.jafc.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A novel affinity peptide orientation and light-controlled covalent immobilized method was developed. Sucrose isomerase (SI) was selected as the model enzyme. Molecular simulation was first performed to select the targeted immobilization region. Subsequently, a short peptide (H2N-VNIGGX-COOH, VG) with high affinity to this region was rationally designed. Thereafter, 4-benzoyl-l-phenylalanine with the photosensitive group of benzophenone was introduced. Then, the affinity between the ligand and the SI was validated using molecular dynamics simulation. Thereafter, the SI was directionally immobilized onto the surface of the epoxy resin (EP) guided by VG via photo-crosslinking, and thus the oriented photo-crosslinking enzymes were obtained. The enzymatic activity, thermostability, and reusability of the affinity directional photo-crosslinked immobilized sucrose isomerase (hv-EP-VG-SI) were systematically studied. The oriented immobilization enzymes were significantly improved in recycling and heat resistance. Moreover, hv-EP-VG-SI retained more than 90% of the original activity and 50% of the activity after 11 cycles.
Collapse
Affiliation(s)
- Nian Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingqiang Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Baogen Chang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Leonhardt F, Gennari A, Paludo GB, Schmitz C, da Silveira FX, Moura DCDA, Renard G, Volpato G, Volken de Souza CF. A systematic review about affinity tags for one-step purification and immobilization of recombinant proteins: integrated bioprocesses aiming both economic and environmental sustainability. 3 Biotech 2023; 13:186. [PMID: 37193330 PMCID: PMC10182917 DOI: 10.1007/s13205-023-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
The present study reviewed and discussed the promising affinity tags for one-step purification and immobilization of recombinant proteins. The approach used to structure this systematic review was The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) methodology. The Scopus and Web of Science databases were used to perform the bibliographic survey by which 267 articles were selected. After the inclusion/exclusion criteria and the screening process, from 25 chosen documents, we identified 7 types of tags used in the last 10 years, carbohydrate-binding module tag (CBM), polyhistidine (His-tag), elastin-like polypeptides (ELPs), silaffin-3-derived pentalysine cluster (Sil3k tag), N-acetylmuramidase (AcmA tag), modified haloalkane dehalogenase (HaloTag®), and aldehyde from a lipase polypeptide (Aldehyde tag). The most used bacterial host for expressing the targeted protein was Escherichia coli and the most used expression vector was pET-28a. The results demonstrated two main immobilization and purification methods: the use of supports and the use of self-aggregating tags without the need of support, depending on the tag used. Besides, the chosen terminal for cloning the tag proved to be very important once it could alter enzyme activity. In conclusion, the best tag for protein one-step purification and immobilization was CBM tag, due to the eco-friendly supports that can be provided from industry wastes, the fast immobilization with high specificity, and the reduced cost of the process.
Collapse
Affiliation(s)
- Fernanda Leonhardt
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Adriano Gennari
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Graziela Barbosa Paludo
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Caroline Schmitz
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Filipe Xerxeneski da Silveira
- Federal Institute of Education, Science, and Technology of Rio Grande do Sul, IFRS, Porto Alegre Campus, Porto Alegre, RS Brazil
| | | | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS Brazil
| | - Giandra Volpato
- Federal Institute of Education, Science, and Technology of Rio Grande do Sul, IFRS, Porto Alegre Campus, Porto Alegre, RS Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| |
Collapse
|
7
|
Zhang L, Wang W, Yang Y, Zhu W, Li P, Wang S, Liu X. Site-specific, covalent immobilization of PNGase F on magnetic particles mediated by microbial transglutaminase. Anal Chim Acta 2023; 1250:340972. [PMID: 36898812 DOI: 10.1016/j.aca.2023.340972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
In the workflow of global N-glycosylation analysis, endoglycosidase-mediated removal of glycans from glycoproteins is an essential and rate-limiting step. Peptide-N-glycosidase F (PNGase F) is the most appropriate and efficient endoglycosidase for the removal of N-glycans from glycoproteins prior to analysis. Due to the high demand for PNGase F in both basic and industrial research, convenient and efficient methods are urgently needed to generate PNGase F, preferably in the immobilized form to solid phases. However, there is no integrated approach to implement both efficient expression, and site-specific immobilization of PNGase F. Herein, efficient production of PNGase F with a glutamine tag in Escherichia coli and site-specific covalent immobilization of PNGase F with this special tag via microbial transglutaminase (MTG) is described. PNGase F was fused with a glutamine tag to facilitate the co-expression of proteins in the supernatant. The glutamine tag was covalently and site-specifically transformed to primary amine-containing magnetic particles, mediated by MTG, to immobilize PNGase F. Immobilized PNGase F could deglycosylate substrates with identical enzymatic performance to that of the soluble counterpart, and exhibit good reusability and thermal stability. Moreover, the immobilized PNGase F could also be applied to clinical samples, including serum and saliva.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Wenhui Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueqin Yang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, 430079, China
| | - Wenjie Zhu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengjie Li
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
8
|
An Efficient and Economical N-Glycome Sample Preparation Using Acetone Precipitation. Metabolites 2022; 12:metabo12121285. [PMID: 36557323 PMCID: PMC9786591 DOI: 10.3390/metabo12121285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the critical role of the glycome in organisms and its close connections with various diseases, much time and effort have been dedicated to glycomics-related studies in the past decade. To achieve accurate and reliable identification and quantification of glycans extracted from biological samples, several analysis methods have been well-developed. One commonly used methodology for the sample preparation of N-glycomics usually involves enzymatic cleavage by PNGase F, followed by sample purification using C18 cartridges to remove proteins. PNGase F and C18 cartridges are very efficient both for cleaving N-glycans and for protein removal. However, this method is most suitable for a limited quantity of samples. In this study, we developed a sample preparation method focusing on N-glycome extraction and purification from large-scale biological samples using acetone precipitation. The N-glycan yield was first tested on standard glycoprotein samples, bovine fetuin and complex biological samples, and human serum. Compared to C18 cartridges, most of the sialylated N-glycans from human serum were detected with higher abundance after acetone precipitation. However, C18 showed a slightly higher efficiency for protein removal. Using the unfiltered human serum as the baseline, around 97.7% of the proteins were removed by acetone precipitation, while more than 99.9% of the proteins were removed by C18 cartridges. Lastly, the acetone precipitation was applied to N-glycome extraction from egg yolks to demonstrate large-scale glycomics sample preparation.
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
10
|
Wu Y, Zhang Y, Li W, Xu Y, Liu Y, Liu X, Xu Y, Liu W. Flowing on-line preparation of deglycosylation, labeling and purification for N-glycan analysis. Talanta 2022; 249:123652. [PMID: 35696978 DOI: 10.1016/j.talanta.2022.123652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
The current in-solution analysis of N-glycans suffers from several disadvantages including tedious de-glycosylation time and multi-step pre-treatment procedures. Here, an ultra-simple flowing on-line analysis of labeled N-glycans for high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for eliminating the deficiencies. This on-line analysis consisted of an immobilized enzyme reactor (IMER) of PNGase F for efficient release of N-glycans, labeling of released N-glycans and following purification of derivatives on microfluidic chip. Notably, efficient preparations for all type of N-glycans were completed within ∼30 min. To our best knowledge, this is the first time to integrated the whole preparation of N-glycan deglycosylation, labeling and purification only by a simple fluidic flow with our developed device. Good reproducibility and stability were achieved with the relative standard deviation (RSD) less than 10%. Furthermore, the glycome studies with human serum revealed a good adaptability for biological samples. Our work provides an efficient N-glycomic strategy that can be applied to further multilayered clinical analysis.
Collapse
Affiliation(s)
- Yike Wu
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Weifeng Li
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yun Xu
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yong Xu
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China; The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| |
Collapse
|
11
|
Kim J, Kim J, Ryu C, Lee J, Park CS, Jin M, Kang M, Kim A, Mun C, Kim HH. Unidentified N-glycans by N-glycosidase A were Identified by Nglycosidase
F under Denaturing Conditions in Plant Glycoprotein. Protein Pept Lett 2022; 29:440-447. [DOI: 10.2174/0929866529666220328152941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Background:
The identification of N-glycans in plant glycoproteins or plant-made pharmaceuticals is essential for understanding their structure, function, properties, immunogenicity, and allergenicity (induced by plant-specific core-fucosylation or xylosylation) in the applications of plant food, agriculture, and plant biotechnology. N-glycosidase A is widely used to release the N-glycans of plant glycoproteins because the core-fucosylated N-glycans of plant glycoproteins are hydrolyzed by N-glycosidase A but not by N-glycosidase F. However, the efficiency of N-glycosidase A activity on plant glycoproteins remains unclear.
Objective:
To elucidate the efficient use of N-glycosidases to identify and quantify the N-glycans of plant glycoproteins, the identification of released N-glycans by N-glycosidase F and their relative quantities with a focus on unidentified N-glycans by N-glycosidase A in plant glycoproteins, Phaseolus vulgaris lectin (PHA) and horseradish peroxidase (HRP), were investigated.
Methods:
Liquid chromatography–tandem mass spectrometry was used to analyze and compare the N-glycans of PHA and HRP treated with either N-glycosidase A or F under denaturing conditions. The relative quantities (%) of each N-glycan (>0.1%) to the total N-glycans (100%) were determined.
Results:
N-glycosidase A and F released 9 identical N-glycans of PHA, but 2 additional core-fucosylated N-glycans were released by only N-glycosidase A, as expected. By contrast, in HRP, 8 N-glycans comprising 6 core-fucosylated N-glycans, 1 xylosylated N-glycan, and 1 mannosylated N-glycan were released by N-glycosidase A. Moreover, 8 unexpected N-glycans comprising 1 core-fucosylated N-glycan, 4 xylosylated N-glycans, and 3 mannosylated N-glycans were released by N-glycosidase F. Of these, 3 xylosylated and 2 mannosylated N-glycans were released by only N-glycansodase F.
Conclusion:
These results demonstrated that N-glycosidase A alone is insufficient to release the N-glycans of all plant glycoproteins, suggesting that to identify and quantify the released N-glycans of the plant glycoprotein HRP, both N-glycosidase A and F treatments are required.
Collapse
Affiliation(s)
- Jeongeun Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Changsoo Ryu
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
| | - Jaeryong Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Mijung Jin
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Minju Kang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ahyeon Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chulmin Mun
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjakgu,
Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang
University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Yu D, Wang N, Gong Y, Wu Z, Wang W, Wang L, Wu F, Jiang L. Screening of active sites and study on immobilization of Bacillus cereus phospholipase C. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Kovács N, Farsang R, Szigeti M, Vonderviszt F, Jankovics H. Enhanced Recombinant Protein Production of Soluble, Highly Active and Immobilizable PNGase F. Mol Biotechnol 2022; 64:914-918. [PMID: 35244857 PMCID: PMC9259526 DOI: 10.1007/s12033-022-00464-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
High resolution analysis of N-glycans can be performed after their endoglycosidase mediated removal from proteins. N-glycosidase F peptide (PNGase F) is one the most frequently used enzyme for this purpose. Because of the significant demand for PNGase F both in basic and applied research, rapid and inexpensive methods are of great demand for its large-scale production, preferably in immobilizable form to solid supports or surfaces. In this paper, we report on the high-yield production of N-terminal 6His-PNGase F enzyme in a bacterial Escherichia coli SHuffle expression system. The activity profile of the generated enzyme was compared to commercially available PNGase F enzymes, featuring higher activity for the former. The method described here is thus suitable for the cost-effective production of PNGase F in an active, immobilizable form.
Collapse
Affiliation(s)
- Noémi Kovács
- Bio-Nanosystems Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprém, 8200, Hungary
| | - Róbert Farsang
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprém, 8200, Hungary
| | - Márton Szigeti
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprém, 8200, Hungary
| | - Ferenc Vonderviszt
- Bio-Nanosystems Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprém, 8200, Hungary
| | - Hajnalka Jankovics
- Bio-Nanosystems Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprém, 8200, Hungary.
| |
Collapse
|
14
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|