1
|
Witting M, Salzer L, Meyer SW, Barsch A. Phosphorylated glycosphingolipids are commonly detected in Caenorhabditis elegans lipidomes. Metabolomics 2025; 21:29. [PMID: 39979652 PMCID: PMC11842410 DOI: 10.1007/s11306-024-02216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/31/2024] [Indexed: 02/22/2025]
Abstract
INTRODUCTION The identification of lipids is a cornerstone of lipidomics, and due to the specific characteristics of lipids, it requires dedicated analysis workflows. Identifying novel lipids and lipid species for which no reference spectra are available is tedious and often involves a lot of manual work. Integrating high-resolution mass spectrometry with enhancements from chromatographic and ion mobility separation enables the in-depth investigation of intact lipids. OBJECTIVES We investigated phosphorylated glycosphingolipids from the nematode Caenorhabditis elegans, a biomedical model organism, and aimed to identify different species from this class of lipids, which have been described in one particular publication only. We checked if these lipids can be detected in lipid extracts of C. elegans. METHODS We used UHPLC-UHR-TOF-MS and UHPLC-TIMS-TOF-MS in combination with dedicated data analysis to check for the presence of phosphorylated glycosphingolipids. Specifically, candidate features were identified in two datasets using Mass Spec Query Language (MassQL) to search fragmentation data. The additional use of retention time (RT) and collisional cross section (CCS) information allowed to filter false positive annotations. RESULTS As a result, we detected all previously described phosphorylated glycosphingolipids and novel species as well as their biosynthetic precursors in two different lipidomics datasets. MassQL significantly speeds up the process by saving time that would otherwise be spent on manual data investigations. In total over 20 sphingolipids could be described. CONCLUSION MassQL allowed us to search for phosphorylated glycosphingolipids and their potential biosynthetic precursors systematically. Using orthogonal information such as RT and CCS helped filter false positive results. With the detection in two different datasets, we demonstrate that these sphingolipids are a general part of the C. elegans lipidome.
Collapse
Affiliation(s)
- Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sven W Meyer
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Aiko Barsch
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| |
Collapse
|
2
|
Scholz J, Rudt E, Gremme A, Gaßmöller Née Wienken CM, Bornhorst J, Hayen H. Hyphenation of supercritical fluid chromatography and trapped ion mobility-mass spectrometry for quantitative lipidomics. Anal Chim Acta 2024; 1317:342913. [PMID: 39030025 DOI: 10.1016/j.aca.2024.342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Lipidomics studies require rapid separations with accurate and reliable quantification results to further elucidate the role of lipids in biological processes and their biological functions. Supercritical fluid chromatography (SFC), in particular, can provide this rapid and high-resolution separation. The combination with trapped ion mobility spectrometry (TIMS) has not yet been applied, although the post-ionization separation method in combination with liquid chromatography or imaging techniques has already proven itself in resolving isomeric and isobaric lipids and preventing false identifications. However, a multidimensional separation method should not only allow confident identification but also provide quantitative results to substantiate studies with absolute concentrations. RESULTS A SFC method was developed and the hyphenation of SFC and TIMS was further explored towards the separation of different isobaric overlaps. Furthermore, lipid identification was performed using mass spectrometry (MS) and parallel accumulation serial fragmentation (PASEF) MS/MS experiments in addition to retention time and collision cross section (CCS). Quantification was further investigated with short TIMS ramps and performed based on the ion mobility signal of lipids, since TIMS increases the sensitivity by noise filtering. The final method was, as an exemplary study, applied to investigate the function of different ceramide synthases (CerS) in the nematode and model organism Caenorhabditis elegans (C. elegans). Loss of three known CerS hyl-1, hyl-2 and lagr-1 demonstrated different influences on and alterations in the sphingolipidome. SIGNIFICANCE This method describes for the first time the combination of SFC and TIMS-MS/MS, which enables a fast and sensitive quantification of lipids. The results of the application to C. elegans samples prove the functionality of the method and support research on the metabolism of sphingolipids in nematodes.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Edward Rudt
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Anna Gremme
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | | | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
3
|
Rudt E, Schneider S, Hayen H. Hyphenation of Liquid Chromatography and Trapped Ion Mobility - Mass Spectrometry for Characterization of Isomeric Phosphatidylethanolamines with Focus on N-Acylated Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1584-1593. [PMID: 38842006 DOI: 10.1021/jasms.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In prior research, hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) has demonstrated applicability for characterizing regioisomers in lipidomics studies, including phosphatidylglycerols (PG) and bis(monoacyl)glycerophosphates (BMP). However, there are other lipid regioisomers, such as phosphatidylethanolamines (PE) and lyso-N-acyl-PE (LNAPE), that have not been studied as extensively. Therefore, hyphenated mass spectrometric methods are needed to investigate PE and LNAPE regioisomers individually. The asymmetric structure of LNAPE favors isomeric species, which can result in coelution and chimeric MS/MS spectra. One way to address the challenge of chimeric MS/MS spectra is through mobility-resolved fragmentation using trapped ion mobility spectrometry (TIMS). Therefore, we developed a multidimensional HILIC-TIMS-MS/MS approach for the structural characterization of isomeric phosphatidylethanolamines in both negative and positive ionization modes. The study revealed the complementary fragmentation pattern and ion mobility behavior of LNAPE in both ionization modes, which was confirmed by a self-synthesized LNAPE standard. With this knowledge, a distinction of regioisomeric PE and LNAPE was achieved in human plasma samples. Furthermore, regioisomeric LNAPE species containing at least one unsaturated fatty acid were noted to exhibit a change in collision cross-section in positive ionization mode, leading to a lipid characterization with respect to fatty acyl positional level. Similar mobility behavior was also observed for the biological LNAPE precursor N-acyl-PE (NAPE). Application of this approach to plasma and cereal samples demonstrated its effectiveness in regioisomeric LNAPE and NAPE species' elucidation.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Svenja Schneider
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| |
Collapse
|
4
|
Luo H, Zhao X, Wang ZD, Wu G, Xia Y, Dong MQ, Ma Y. Sphingolipid profiling reveals differential functions of sphingolipid biosynthesis isozymes of Caenorhabditis elegans. J Lipid Res 2024; 65:100553. [PMID: 38704027 PMCID: PMC11153919 DOI: 10.1016/j.jlr.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.
Collapse
Affiliation(s)
- Hui Luo
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Zi-Dan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Gang Wu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Meng-Qiu Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Yan Ma
- National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Holzapfel R, Prell A, Schumacher F, Perschin V, Friedmann Angeli JP, Kleuser B, Stigloher C, Fazeli G. Degradation of hexosylceramides is required for timely corpse clearance via formation of cargo-containing phagolysosomal vesicles. Eur J Cell Biol 2024; 103:151411. [PMID: 38582051 DOI: 10.1016/j.ejcb.2024.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in C. elegans tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of spp-10-deficient worms, which are likely caused by increased hexosylceramide species. spp-10 deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in spp-10-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.
Collapse
Affiliation(s)
- Rebecca Holzapfel
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany; Core-Facility BioSupraMol, Pharma-MS subunit, Freie Universität Berlin, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Gholamreza Fazeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Zhao J, Qiao L, Xia Y. In-Depth Characterization of Sphingoid Bases via Radical-Directed Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2394-2402. [PMID: 37735971 DOI: 10.1021/jasms.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sphingoid base (SPH) is a basic structural unit of all classes of sphingolipids. A sphingoid base typically consists of an aliphatic chain that may be desaturated between C4 and C5, an amine group at C2, and a variable number of OH groups located at C1, C3, and C4. Variations in the chain length and the occurrence of chemical modifications, such as methyl branching, desaturation, and hydroxylation, lead to a large structural diversity and distinct functional properties of sphingoid bases. However, conventional tandem mass spectrometry (MS/MS) via collision-induced dissociation (CID) faces challenges in characterizing these modifications. Herein, we developed an MS/MS method based on CID-triggered radical-directed dissociation (RDD) for in-depth characterization of sphingoid bases. The method involves derivatizing the sphingoid amine with 3-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-picolinic acid 2,5-dioxopyrrolidin-1-yl ester (TPN), followed by MS2 CID to unleash the pyridine methyl radical moiety for subsequent RDD. This MS/MS method was integrated on a reversed-phase liquid chromatography-mass spectrometry workflow and further applied for in-depth profiling of total sphingoid bases in bovine heart and Caenorhabditis elegans. Notably, we identified and relatively quantified a series of unusual sphingoid bases, including SPH id17:2 (4,13) and SPH it19:0 in C. elegans, revealing that the metabolic pathways of sphingolipids are more diverse than previously known.
Collapse
Affiliation(s)
- Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lipeng Qiao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Zhang L, Shen L, Zhong Q, Zhou T. Diluting modulation-based two dimensional-liquid chromatography coupled with mass spectrometry for simultaneously determining multiclass prohibited substances in cosmetics. J Chromatogr A 2023; 1695:463954. [PMID: 37011524 DOI: 10.1016/j.chroma.2023.463954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Developing efficient and comprehensive screening methods for prohibited substances in cosmetics is critical for ensuring the quality and safety of cosmetics used in everyday life. This study proposed a heart-cutting two-dimensional liquid chromatography-mass spectrometry (2D-LC-MS) method based on online diluting modulation for detecting multiclass prohibited substances in cosmetics. The 2D-LC-MS method combines HILIC and RPLC techniques. Compounds near the dead time that the first dimensional HILIC could not separate were transferred to the second dimensional RPLC by valve switch, achieving good separation with a wide range of polarities. Moreover, the online diluting modulation solved the problem of mobile phase incompatibility, realizing an excellent column-head focusing effect and reducing the loss of sensitivity. Besides, the first dimensional analysis did not restrict the flow rate of the second dimensional analysis owing to the diluting modulation. We demonstrated the 2D-LC-MS system by determining 126 prohibited substances in cosmetic products, including hormones, local anesthetics, anti-infectives, adrenergic agents, antihistamines, pesticides, and other chemicals. All correlation coefficients of the compounds were above 0.9950. The LODs and the LOQs ranged from 0.000259 ng/mL to 16.6 ng/mL and 0.000864 ng/mL to 55.3 ng/mL, respectively. The RSDs% for intra-day and inter-day precision were within 6% and 14%, respectively. Compared with conventional one-dimensional liquid chromatography methods, the established method expanded the analytical coverage of cosmetics-prohibited substances with reduced matrix effects for most compounds and improved sensitivity for polar analytes. The results indicated that the 2D-LC-MS method was a powerful tool for screening multiclass prohibited substances in cosmetics.
Collapse
Affiliation(s)
- Liping Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Lingling Shen
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510010, China
| | - Qisheng Zhong
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510010, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Dai Y, Zhang K, Xiong L, Wang L, Guo Z, Yang J, Wu A, Wu J, Zeng J. Comprehensive profiling of Sanguisorba officinalis using off-line two-dimensional mixed-mode liquid chromatography × reversed-phase liquid chromatography, tandem high-resolution mass spectrometry, and molecular network. J Sep Sci 2022; 45:1727-1736. [PMID: 35297180 DOI: 10.1002/jssc.202200013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 03/13/2022] [Indexed: 11/08/2022]
Abstract
The profiling of natural products is important in modern biological sciences and new drug development. However, the separation and characterization of complex herbal extracts are significantly challenging for researchers in the biochemical field. Herein, an off-line two-dimensional mixed-mode LC × reversed-phase LC system is developed. Our system exhibits high orthogonality and is composed of a newly prepared stationary phase in the first dimension and a traditional C18 phase in the second dimension, and is operated in combination with high-resolution MS and molecular network. Sanguisorba officinalis L. is studied using the proposed method owing to its bioactivity. With the aid of orthogonal separation, the ionization of the individual components is improved. The number of detected compounds and separated peaks are significantly increased when one-dimensional-LC is upgraded to two-dimensional-LC. In addition, 270 compounds (127 of which are tentatively characterized as new compounds, and further confirmation is needed) are successfully characterized based on their fragmentation patterns under the guidance of molecular network, while only 95 compounds are characterized using one-dimensional-LC and high-resolution MS. The results indicate that the developed off-line two-dimensional mixed-mode LC × reversed-phase LC, tandem high-resolution MS, and molecular network method is effective for profiling complex samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yubei Dai
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ling Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhimou Guo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Luzhou, China.,Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou, China.,Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|