1
|
Battellino T, Yeung D, Neustaeter H, Spicer V, Ogata K, Ishihama Y, Krokhin OV. Retention time prediction for post-translationally modified peptides: Ser, Thr, Tyr-phosphorylation. J Chromatogr A 2024; 1718:464714. [PMID: 38359688 DOI: 10.1016/j.chroma.2024.464714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
The development of a peptide retention prediction model for reversed-phase chromatography applications in proteomics is reported for peptides carrying phosphorylated Ser, Thr and Tyr-residues. The major retention features have been assessed using a collection of over 10,000 phosphorylated/non-phosphorylated peptide pairs identified in a series 1D and 2D LC-MS/MS acquisitions using formic acid as ion pairing modifier. Single modification event on average results in increased peptide retention for phosphorylation of Ser (+ 1.46), Thr (+1.33), Tyr (+0.93% acetonitrile, ACN) on gradient elution scale for Luna C18(2) stationary phase. We established several composition and sequence specific features, which drive deviations from these average values. Thus, single phosphorylation of serine results in retention shifts ranging from -2.4 to 5.5% ACN depending on position of the residue, nature of nearest neighbour residues, peptide length, hydrophobicity and pI value, and its propensity to form amphipathic helical structures. We established that the altered ion-pairing environment upon phosphorylation is detrimental for this variability. Hydrophobicity of ion-pairing modifier directly informs the magnitude of expected shifts: (most hydrophilic) 0.5 % acetic acid (larger positive shift upon phosphorylation) > 0.1 % formic acid (positive) > 0.1 % trifluoroacetic (negative) > 0.1 % heptafluorobutyric acid (larger negative shift). The effect of phosphorylation has been also evaluated for several separation conditions used in the first dimension of 2D LC applications: high pH reversed-phase (RP), hydrophilic interaction liquid chromatography (HILIC), strong cation- and strong anion exchange separations.
Collapse
Affiliation(s)
- Taylor Battellino
- Department of Chemistry, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, R3T 2N2, Canada
| | - Darien Yeung
- Department of Biochemistry and Medical Genetics, University of Manitoba, 336 BMSB, 745 Bannatyne Avenue, Winnipeg, R3E 0J9, Canada
| | - Haley Neustaeter
- Department of Chemistry, University of Manitoba, 360 Parker Building, 144 Dysart Road, Winnipeg, R3T 2N2, Canada
| | - Vic Spicer
- Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg, R3E 3P4, Canada
| | - Kosuke Ogata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Avenue, Winnipeg, R3E 3P4, Canada; Department of Internal Medicine, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg, R3E 3P4, Canada.
| |
Collapse
|
2
|
Neale Q, Prefontaine A, Battellino T, Mizero B, Yeung D, Spicer V, Budisa N, Perreault H, Zahedi RP, Krokhin OV. Compendium of Chromatographic Behavior of Post-translationally and Chemically Modified Peptides in Bottom-Up Proteomic Experiments. Anal Chem 2023; 95:14634-14642. [PMID: 37739932 DOI: 10.1021/acs.analchem.3c02412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
We have systematically evaluated the chromatographic behavior of post-translationally/chemically modified peptides using data spanning over 70 of the most relevant modifications. These retention properties were measured for standard bottom-up proteomic settings (fully porous C18 separation media, 0.1% formic acid as ion-pairing modifier) using collections of modified/nonmodified peptide pairs. These pairs were generated by spontaneous degradation, chemical or enzymatic treatment, analysis of synthetic peptides, or the cotranslational incorporation of noncanonical proline analogues. In addition, these measurements were validated using external data acquired for synthetic peptides and enzymatically induced citrullination. Working in units of hydrophobicity index (HI, % ACN) and evaluating the average retention shifts (ΔHI) represent the simplest approach to describe the effect of modifications from a didactic point of view. Plotting HI values for modified (y-axis) vs nonmodified (x-axis) counterparts generates unique slope and intercept values for each modification defined by the chemistry of the modifying moiety: its hydrophobicity, size, pKa of ionizable groups, and position of the altered residue. These composition-dependent correlations can be used for coarse incorporation of PTMs into models for prediction of peptide retention. More accurate predictions would require the development of specific sequence-dependent algorithms to predict ΔHI values.
Collapse
Affiliation(s)
- Quinn Neale
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg R3T 2N2, Manitoba, Canada
| | - Alexandre Prefontaine
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg R3T 2N2, Manitoba, Canada
| | - Taylor Battellino
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg R3T 2N2, Manitoba, Canada
| | - Benilde Mizero
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg R3T 2N2, Manitoba, Canada
| | - Darien Yeung
- Department of Biochemistry and Medical Genetics, University of Manitoba, 336 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg R3E 0J9, Manitoba, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Manitoba, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg R3T 2N2, Manitoba, Canada
| | - Helene Perreault
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg R3T 2N2, Manitoba, Canada
| | - Rene P Zahedi
- Department of Biochemistry and Medical Genetics, University of Manitoba, 336 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg R3E 0J9, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Manitoba, Canada
- CancerCare Manitoba Research Institute, 675 McDermot Avenue, Winnipeg R3E 0 V9, Manitoba, Canada
| | - Oleg V Krokhin
- Department of Biochemistry and Medical Genetics, University of Manitoba, 336 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg R3E 0J9, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Manitoba, Canada
- Department of Internal Medicine, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg R3E 3P4, Manitoba, Canada
| |
Collapse
|
3
|
Fu JY, Muroski JM, Arbing MA, Salguero JA, Wofford NQ, McInerney MJ, Gunsalus RP, Loo JA, Ogorzalek Loo RR. Dynamic acylome reveals metabolite driven modifications in Syntrophomonas wolfei. Front Microbiol 2022; 13:1018220. [PMID: 36419437 PMCID: PMC9676460 DOI: 10.3389/fmicb.2022.1018220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Syntrophomonas wolfei is an anaerobic syntrophic microbe that degrades short-chain fatty acids to acetate, hydrogen, and/or formate. This thermodynamically unfavorable process proceeds through a series of reactive acyl-Coenzyme A species (RACS). In other prokaryotic and eukaryotic systems, the production of intrinsically reactive metabolites correlates with acyl-lysine modifications, which have been shown to play a significant role in metabolic processes. Analogous studies with syntrophic bacteria, however, are relatively unexplored and we hypothesized that highly abundant acylations could exist in S. wolfei proteins, corresponding to the RACS derived from degrading fatty acids. Here, by mass spectrometry-based proteomics (LC-MS/MS), we characterize and compare acylome profiles of two S. wolfei subspecies grown on different carbon substrates. Because modified S. wolfei proteins are sufficiently abundant to analyze post-translational modifications (PTMs) without antibody enrichment, we could identify types of acylations comprehensively, observing six types (acetyl-, butyryl-, 3-hydroxybutyryl-, crotonyl-, valeryl-, and hexanyl-lysine), two of which have not been reported in any system previously. All of the acyl-PTMs identified correspond directly to RACS in fatty acid degradation pathways. A total of 369 sites of modification were identified on 237 proteins. Structural studies and in vitro acylation assays of a heavily modified enzyme, acetyl-CoA transferase, provided insight on the potential impact of these acyl-protein modifications. The extensive changes in acylation-type, abundance, and modification sites with carbon substrate suggest that protein acylation by RACS may be an important regulator of syntrophy.
Collapse
Affiliation(s)
- Janine Y. Fu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - John M. Muroski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Mark A. Arbing
- UCLA-DOE Institute, University of California, Los Angeles, CA, United States
| | - Jessica A. Salguero
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
| | - Neil Q. Wofford
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Michael J. McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Robert P. Gunsalus
- UCLA-DOE Institute, University of California, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
- UCLA Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
- UCLA-DOE Institute, University of California, Los Angeles, CA, United States
- UCLA Molecular Biology Institute, University of California, Los Angeles, CA, United States
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, United States
- UCLA-DOE Institute, University of California, Los Angeles, CA, United States
- UCLA Molecular Biology Institute, University of California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Li J, Liu J, Weng Q. A Hydrophilic Strong Anion-Exchange Hybrid Monolith for Capillary Liquid Chromatography. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.od3570x2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hydrophilic strong anion-exchange monolithic hybrid column was prepared by in-capillary coating 5-µm bare silica particles with the copolymers of methacryloxyethyltrimethyl ammonium chloride and pentaerythritol triacrylate in the presence of a porogen consisting of water, methanol, and cyclohexanol. The composition of the porogen and the concentration of the monomers were investigated and selected. The resulting column was characterized. The column had an uniform pore structure and could withstand a back pressure up to 3500 psi. Its permeability was comparable to that of packed columns and the swelling-shrinking behaviour negligible. Its hydrophobicity could be suppressed at acetonitrile concentrations above 40% (v/v) and the minimum theoretical plate height was about 10 µm for BrÑ. The column-to-column relative standard deviations (RSDs) were 2.2% and 3.5% (n = 9) and the batch-to-batch RSDs were 2.4% and 5.5% (n = 3) for k and H values, respectively. The column exhibited a remarkable performanceforthe separation of inorganic anions, organic weak acids, phenols, and nucleotides.
Collapse
Affiliation(s)
| | - Jun Liu
- Liaoning Normal University, China
| | | |
Collapse
|