1
|
Zhong L, Zhong J, Gu Z, Zhang X, Zhou Q, Zhai H. Synthesis of composite materials combining magnetic metal-organic frameworks and conjugated organic frameworks for selective extraction of carbendazim and thiabendazole residues from Chinese herbal medicine samples. J Chromatogr A 2023; 1712:464474. [PMID: 37924618 DOI: 10.1016/j.chroma.2023.464474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
A magnetic metal-organic framework MIL-68(Al) and a covalent organic framework were used as magnetic solid-phase extraction (MSPE) adsorbents in combination with high-performance liquid chromatography ultraviolet detection (HPLC-UV) to detect carbendazim (CBZ) and thiabendazole (TBZ). The main parameters affecting the extraction in the MSPE process were studied and optimized. Fe3O4@MIL-68(Al) coated with 1,3,5-tris(4-aminophenyl)benzene and terephthaldehyde (Fe3O4@MIL-68(Al)@TAPB-PDA-COF) was analyzed and verified. The material was proven to be suitable for adsorbing CBZ and TBZ. Various adsorption models were used to study its adsorption mechanism. The adsorption results were in good agreement with the pseudo-second-order kinetic model and Langmuir isotherm model. The maximum adsorption capacities of Fe3O4@MIL-68(Al)@TAPB-PDA-COF over CBZ and TBZ were 54.24 and 67.87 mg g-1, respectively, and the equilibrium adsorption time was 200 min. Fe3O4@MIL-68(Al)@TAPB-PDA-COF with excellent recyclability showed higher adsorption capacity and selectivity. A method based on Fe3O4@MIL-68(Al)@TAPB-PDA-COF combined with HPLC-UV was established under the optimal extraction conditions and used to separate and detect trace imidazole drugs in Chinese herbal samples, achieving a low limit of detection (0.65-1.30 μg L-1) with excellent linear correlation (r > 0.999). The recovery rate and relative standard deviation were 86.05-99.78 % and 0.15-4.90 %, respectively. Therefore, the Fe3O4@MIL-68@TAPB-PDA-COF can be regarded as an effective adsorbent for the pretreatment of CBZ and TBZ drugs in Chinese herbal samples.
Collapse
Affiliation(s)
- Lijuan Zhong
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Jiapeng Zhong
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Zhenwei Gu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Xiaohui Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Qing Zhou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Wang T, Xie C, You Q, Tian X, Xu X. Qualitative and quantitative analysis of four benzimidazole residues in food by surface-enhanced Raman spectroscopy combined with chemometrics. Food Chem 2023; 424:136479. [PMID: 37263093 DOI: 10.1016/j.foodchem.2023.136479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
In this study, surface-enhanced Raman spectroscopy (SERS) combined with chemometric methods were developed for qualitative and quantitative analysis of four benzimidazole (BMZs) residues in corn. Sulfhydryl functionalized Fe3O4@SiO2@Ag-SH magnetic SERS substrates were prepared to obtain the SERS spectra of four BMZs for chemometric analysis. The partial least squares regression discrimination analysis (PLS-DA) model performed best, with a recall rate upwards 99.17%, and could successfully distinguish four BMZs. Under the support vector machine regression (SVR) model, the detection limits of carbendazim, benomyl, thiophanate-methyl and thiabendazole were 0.055 mg/L, 0.056 mg/L, 0.067 mg/L and 0.093 mg/L, respectively; the average recovery was in the range of 85.6%-107.5%. Furthermore, the method verified by HPLC, and the results showed that there was no significant difference between two methods (p > 0.05). Therefore, the strategy based on SERS coupling chemometrics can be served as a promising tool for rapid determination of BMZs residues in food.
Collapse
Affiliation(s)
- Tianyao Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuangjie Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qian You
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingguo Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyan Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Zhu SC, Shi Y, Jin HF, Cao J, Ye LH. Nanographite-assisted matrix solid phase dispersion microextraction of active and toxic compounds from complex food matrices using cyclodextrin aqueous solution as elution solvent. Food Chem 2023; 417:135894. [PMID: 36917908 DOI: 10.1016/j.foodchem.2023.135894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023]
Abstract
In this study, a cyclodextrin aqueous solution was used as an environmentally friendly eluent to simultaneously extract active and toxic compounds from food matrices with the aid of nanographite-assisted matrix solid phase dispersion microextraction (NG-MSPDM). The NG-MSPDM procedure was optimized by single-factor experiments and response surface methodology to obtain optimum conditions. The proposed method achieved excellent linearity at 0.10-20 μg/mL for all target analytes with a coefficient of correction (R2) ≥ 0.9909, limits of detection < 52.01 ng/mL, satisfactory reproducibility below 3.21 %, and acceptable recoveries of 82.0-112 %. To accurately determine the target components in the complex matrix, collision cross-section values of the analytes were obtained using ion mobility quadrupole time-of-flight mass spectrometry (IM-Q-TOF/MS). Results indicated that the NG-MSPDM method successfully achieved the simultaneous extraction of flavonoids and phenoxyacetic herbicides from Alpinia officinarum.
Collapse
Affiliation(s)
- Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou 310003, PR China.
| |
Collapse
|
4
|
Hu J, Yang Y, Guan Y, Li R, Liu C, Yao G, Zhao W. Determination of benzimidazole pesticide residues in soil by ultrasound‐assisted supramolecular solvent microextraction. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Jiabao Hu
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Yuqi Yang
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Yunlei Guan
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Rui Li
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Chunxiao Liu
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Guojun Yao
- Total Component Analysis Laboratory Nutrichem Co., Ltd. Beijing P. R. China
| | - Wenting Zhao
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| |
Collapse
|
5
|
Mokhtar MS, Elbashir AA, Suliman FO. Spectroscopic and molecular simulation studies on the interaction of imazaquin herbicide with cucurbiturils (n = 6–8). J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Santaladchaiyakit Y, Sirijan A, Wongchalee M, Phurimsak C, Baoulan A, Gamonchuang J, Boontongto T, Vichapong J, Burakham R, Srijaranai S. A simple co-precipitation sorbent-based preconcentration method for the analysis of fungicides in water and juice samples by high-performance liquid chromatography coupled with photodiode array detection. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractA magnesium hydroxide co-precipitation sorbent-based method in the presence of an anionic surfactant (e.g., sodium dodecylbenzenesulfonate) and high-performance liquid chromatography were used to preconcentrate and analyze fungicides in water and apple juice samples. The preconcentration procedure can be accomplished in a single step based on the co-precipitation of target fungicides and magnesium chloride in the presence of surfactant in a sodium hydroxide solution (pH 11) and a white precipitate gel was simply obtained after centrifugation. The property of precipitate phase was subsequently characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffractometry. Under the optimum conditions, the developed method exhibited good sensitivity, with an enrichment factor of 11–18 and limits of detection of approximately 1–5 μg/L for water samples and 7–10 μg/L for apple juices. High reproducibility was achieved with a relative standard deviation of less than 11%, and a good recovery range of 72% to 120% was also obtained. The proposed method was shown to be a simple preconcentration procedure for concentrating fungicides in the samples investigated.
Collapse
|
7
|
Chen R, Zhang X, Liu F, Liu C, Peng Q, Qiao X. Theoretical design and preparation of ionic liquid-based magnetic nanoparticles for the magnetic dispersive solid-phase extraction of benzimidazoles in human plasma. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Guan M, Guo Y, Yan X, Si X, Peng X, Lei Y, Shen X, Luo L, He H. Silver ions involved fluorescence "on-off" responses of gold nanoclusters system for determination of carbendazim residues in fruit samples. Food Chem 2022; 386:132836. [PMID: 35381539 DOI: 10.1016/j.foodchem.2022.132836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
Herein, a fluorescence "on-off" system was developed for monitoring carbendazim (CBZ) residues in fruit samples, based on glutathione-gold nanoclusters (GSH-Au NCs) and silver ions (Ag+). First, the fluorescence intensity of GSH-Au NCs was greatly enhanced (turn on) with aggregation-induced emission enhancement (AIEE) effect in the presence of Ag+, then fluorescence quenching occurred (turn off) with adding CBZ by the chelation between CBZ and Ag+. The quenching degree was well linearly dependent on CBZ concentration covering from 0.5 to 20 μM. Moreover, the GSH-Au NCs-Ag+ system exhibited superior selectivity towards CBZ and was sensitive for the determination of CBZ in apple and orange juices with a low detection limit of 0.12 μM. The recoveries of CBZ spiked in fruit samples ranged from 81.0 % to 111.4% with the relative standard deviations less than 6.6%, demonstrating its great potential for monitoring CBZ residues in fruit samples.
Collapse
Affiliation(s)
- Mengting Guan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yue Guo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaoxia Yan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaojing Si
- Department of Food Science, Shanghai Business School, Shanghai 200235, PR China
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Yunyi Lei
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xia Shen
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Haibo He
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|