1
|
Jin Q, Xu Q, Zhao Z, Si W, Bai B, Chen L, Zhou C. Simultaneous Determination of Six Acidic Herbicides and Metabolites in Plant Origin Matrices by QuEChERS-UPLC-MS/MS. Molecules 2025; 30:852. [PMID: 40005163 PMCID: PMC11858014 DOI: 10.3390/molecules30040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This study presents a method for the simultaneous determination of six acidic herbicides and their metabolites in various matrices, including fruits, vegetables, grains, and edible oils. The method employs acidified acetonitrile extraction combined with dispersive solid-phase extraction cleanup (dSPE) using MgSO4, Florisil, and Graphitized carbon black (GCB). The analysis was performed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with electrospray ionization (ESI) in both positive and negative modes using multiple reaction monitoring (MRM). The mass concentrations of six herbicide pesticides and their metabolites were predominantly within the range of 0.0005~0.050 mg/L and exhibited strong linear relationships with the corresponding peak area, with the coefficient of determination (R2) exceeding 0.993. The limits of detection (LOD) for the method ranged from 0.0001 to 0.008 mg/kg. The recovery rates of adding recovery experiments to cabbage, chives, pear, wheat flour, and soybean oil were 69.8~120%, and the relative standard deviation (RSD) was 0.6~19.5%. The results indicate that this method is efficient and fast, and can be used for the detection of compounds in various actual matrices.
Collapse
Affiliation(s)
- Qiqi Jin
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.J.)
- Shanghai Co-Elite Agro-Product Testing Technology Service Co., Ltd., Shanghai 201403, China
| | - Qianwen Xu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.J.)
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhiyong Zhao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.J.)
| | - Wenshuai Si
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.J.)
- Shanghai Co-Elite Agro-Product Testing Technology Service Co., Ltd., Shanghai 201403, China
| | - Bing Bai
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.J.)
| | - Lei Chen
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.J.)
- Shanghai Co-Elite Agro-Product Testing Technology Service Co., Ltd., Shanghai 201403, China
| | - Changyan Zhou
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Q.J.)
| |
Collapse
|
2
|
Zhang J, Hu H, Wang J, Lu K, Zhou Y, Zhao L, Peng J. Gold nanoclusters-based fluorescence sensor array for herbicides qualitative and quantitative analysis. Anal Chim Acta 2024; 1298:342380. [PMID: 38462337 DOI: 10.1016/j.aca.2024.342380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Herbicides have been extensively used around the world, which poses a potential hazard to humans and wildlife. Accurate detection of herbicides is crucial for the environment and human health. Herein, a simple and sensitive fluorescence sensor array was constructed for discrimination and identification of herbicides. Fluorescent gold nanoclusters modified with 11-mercaptoundecanoic acid or reduced glutathione were prepared, respectively. Metal ions quenched the fluorescence of nanoclusters through coordination and leading to the aggregation of gold nanoclusters. The addition of auxin herbicides (2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, decamba, picloram, quinclorac) restored the fluorescence of nanoclusters with different degrees. The mechanism study showed auxin herbicides can bind with metal ions and re-disperse the gold nanoclusters from the aggregation state. The "on-off-on" fluorescent sensor array was constructed basic on above detection mechanism. Combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA) methods, auxin herbicides are well separated on 2D/3D PCA score plots and HCA dendrogram in the range of 40-500 μm. In addition, the fluorescence sensor array performed successful in detecting real samples and blind samples. The developed sensor system shows a promising in practical detection of herbicides.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Huihui Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jian Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
3
|
Cao S, Huang S, Yang C, Lian L, Ren M, Sun D. ZIF-67-modified magnetic nanoparticles for extraction of phenoxy carboxylic acid herbicides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5483-5491. [PMID: 37840357 DOI: 10.1039/d3ay01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Phenoxy carboxylic acid (PCA) herbicides are commonly used herbicides that can easily accumulate in soil, groundwater, crops, and vegetable surfaces. Thus, they pose a serious risk to human health. Accurate detection of trace amounts of PCAs in various matrixes is crucial. Herein, ZIF-67-modified magnetic nanoparticles (MNPs, ZIF-67@Fe3O4) were prepared by growing ZIF-67 on the surface of Fe3O4 MNPs. The introduction of ZIF-67 improved the dispersion of Fe3O4 nanoparticles in water and enhanced their extraction performance for PCAs. When an eluent consisting of ammonia water and acetonitrile (5% : 95%; v/v) was employed, 10 mg of ZIF-67@Fe3O4 displayed optimal extraction performance for PCAs in a 20 mL sample solution at a pH of 3. We achieved a limit of detection ranging from 0.014 μg L-1 to 0.056 μg L-1 for four types of PCA herbicides by using the newly developed method. Notably, the values were considerably lower than the maximum concentration levels of PCAs in drinking water set by the Environmental Protection Agency. The relative recovery rate of PCAs using ZIF-67@Fe3O4 ranged from 83.75% to 117.07% when applied to river water and apple samples. These results demonstrate the great potential of ZIF-67@Fe3O4 in determining the residues of organic pesticides in real samples.
Collapse
Affiliation(s)
- Shengyu Cao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| | - Shanshan Huang
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Chudi Yang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Minhong Ren
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Dazhi Sun
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| |
Collapse
|