1
|
Fonseca J, Broto-Ribas A, Jiao L, Pei X. Pickering emulsions stabilized by metal-organic framework nanoparticles. Adv Colloid Interface Sci 2025; 342:103532. [PMID: 40328072 DOI: 10.1016/j.cis.2025.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/31/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Pickering emulsions are attractive formulations due to their simplicity, similar to traditional surfactant-based emulsions, and their potential to create functional materials. Recently, Pickering emulsions stabilized by metal-organic framework (MOF) nanoparticles have garnered significant interest. This Review aims to systematize our knowledge of how MOF nanoparticles stabilize Pickering emulsions, providing fundamental insights for advancing this field. We thoroughly examine the emulsification process of Pickering emulsions stabilized by MOF nanoparticles. Additionally, we detail the superstructures derived from these emulsions, including colloidosomes, hydrogel droplets, 3D honeycomb network structures, molecularly imprinted polymers, monoliths, and micromotors. Finally, we discuss challenges and future research opportunities related to this type of emulsion.
Collapse
Affiliation(s)
- Javier Fonseca
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115-5000, United States.
| | - Anna Broto-Ribas
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Li Jiao
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115-5000, United States
| | - Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, PR China
| |
Collapse
|
2
|
Xu H, Huang M, Huan H, Cui L, Liu L, Xu X, Chen Y, Wei W, Jin Q, Jin J, Wang X. Plant-based whipping cream: A promising sustainable alternative to dairy products. Adv Colloid Interface Sci 2025; 341:103494. [PMID: 40187090 DOI: 10.1016/j.cis.2025.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Future food is dedicated to transforming the traditional production model of the food industry, making people and the planet healthier, and addressing the challenges facing humanity. The development of plant-based foods is one of the core contents of future food and an important way to achieve green and low-carbon development of the food industry. A prevailing food trend in the dairy industry is the demand to develop various plant-based alternatives to dairy products. Plant-based whipping cream is a complex emulsion-foam system that can be transformed from an oil-in-water emulsion structure to a triphasic (solid-liquid-gas) foam structure by whipping, which should achieve a subtle balance between emulsion stability, whipping destabilization, and foam re-stabilization. This review aims to understand the science and technology underlying the development of plant-based whipping cream. The initial focus is on the fundamental principle of stabilization and destabilization of plant-based whipping cream, as the development of successful products depends on understanding their physicochemical basis. Three main processing technologies for the manufacture of plant-based whipping cream are then introduced: homogenization, sterilization, and tempering. Besides that, the role of the basic ingredients in plant-based whipping cream is highlighted, including vegetable fats, plant proteins, low-molecular-weight emulsifiers, and thickeners. In order to quantify and compare the quality attributes of different plant-based whipping cream products under standardized conditions, we provide an overview of characterization methods to evaluate emulsion stability, whipping destabilization, and foam re-stabilization of plant-based whipping cream. Subsequently, the legislations and regulations related to plant-based whipping cream products are introduced to cater to their market development. Finally, the current challenges faced by plant-based whipping cream are highlighted. This review aims to provide a guidance for researchers and manufacturers in related industries.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingcui Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huilin Huan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Limin Cui
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Longfei Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xianmin Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuhang Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Food Laboratory of Zhongyuan, Luohe, Henan Province, 462300, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Food Laboratory of Zhongyuan, Luohe, Henan Province, 462300, China.
| |
Collapse
|
3
|
Bacal CJO, Allardyce BJ, Valente F. Influence of material format and surface chemistry for the sustained delivery and efficacy of silk drug delivery systems in vivo. J Mater Chem B 2025. [PMID: 40400450 DOI: 10.1039/d4tb02756f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Silk fibroin materials are promising for use in controlled drug delivery in the field of tissue engineering and biomedical applications thanks to silk's generally established biocompatibility and tunable properties for implants and drug storage. Several factors must be considered in the materials design, including material format, drug properties and release kinetics, and the activity and stability of the drug after release. While numerous reviews described silk-based DDS that demonstrated controllable in vitro release, success in vivo has been limited, especially in some material formats. This review therefore aims to provide insight into the current material format and functionalization strategies to maximize in vivo performance by describing the in vivo activity of recently developed silk drug delivery systems. The review also aims to provide a fresh perspective on the suitable format and functionalization strategies for a target biomedical application. Based on the release behavior of drugs in various material formats, silk films, foams, and microneedles were better suited to serve as scaffolds for cell regeneration and improved recovery rate for biomedical applications involving wound healing and tissue engineering. Gels and particles could be incorporated within the films and foams but the purpose would be to serve as additional physical barriers towards drug diffusion in these types of application. For drugs or therapeutics that target internal organs (i.e. brain, liver, intestines, etc.), gels and particles were mainly used due to their size. In the event that the material format selection based on the target application does not contribute a lot to the prolonged release of drugs or therapeutic agents, hybrid functionalization strategies were adapted to make the surface chemistry of the material more responsive to the environmental stimuli for a more tunable silk DDS.
Collapse
Affiliation(s)
- Christine Jurene O Bacal
- Ear Science Institute Australia, Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands 6009, Australia.
| | | | - Filippo Valente
- Ear Science Institute Australia, Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands 6009, Australia.
| |
Collapse
|
4
|
Liu D, Zhu Z, Cao A, Li Y, Yin Y. Asymmetric Self-Assembly of Colloidal Superstructures in Nested Transient Emulsion Aerosols. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420269. [PMID: 40195899 DOI: 10.1002/adma.202420269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Emulsions are versatile and robust platforms for colloidal self-assembly, but their ability to create complex and functional superstructures is hindered by the inherent symmetry of droplets. Here the creation of an aerosol of nested transient emulsion droplets with inherent asymmetry is reported, achieved by converging beams of water and 1-butanol mists. Self-assembly of nanoparticles occurs within such emulsion droplets as driven by the rapid two-phase interface diffusion, producing anisotropic superstructures. A unique hollowing process is observed due to the asymmetric diffusion of solvents, akin to the Kirkendall effect. This novel assembly platform offers several advantages, including asymmetric self-assembly in air, surfactant-free operation, and tunable droplet size. It enables the creation of clean, functional nanoparticle superstructures that can be easily disassembled when needed. These advancements pave the way for exploring intricate, anisotropic superstructures with diverse applications that are unavailable in conventional superstructures of spherical symmetry.
Collapse
Affiliation(s)
- Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Zhaoting Zhu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Zhang Q, Chen Y, Liu W, Ye Y, Cheng D, Zheng H, Wu L. Effects of Tweens on the Structure, interfacial Characteristics, and emulsifying and foaming properties of Ovalbumin. Food Res Int 2025; 203:115824. [PMID: 40022349 DOI: 10.1016/j.foodres.2025.115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 03/03/2025]
Abstract
Parameters such as interfacial tension, dynamics, and rheology are intricately linked to the emulsifying and foaming properties of proteins. In this study, the effects of different Tween types and concentrations on the structure and interfacial characteristics of ovalbumin (OVA) were examined, and their relationships with emulsifying and foaming properties were explored. The results showed that the addition of Tween caused the structure of OVA to become looser and more disordered (β-sheets gradually transformed into β-turns) and exposed more hydrophobic groups. In addition, with the increase in Tween concentration, OVA-Tween systems exhibited lower interfacial tension and could adsorb more rapidly at both the air-water and oil-water interfaces. Additionally, the interfacial elastic modulus of these systems also increased. Compared with natural OVA (EAI = 4.023 m2/g, FA = 60.00 %), OVA-Tween showed significantly enhanced emulsifying and foaming abilities. However, higher Tween concentrations (0.1 %) led to competitive adsorption between OVA and Tween, inducing a reduction in the interfacial modulus and a slight decrease in the emulsifying and foaming stability. The emulsifying and foaming performance of the four composite systems were as follows: OVA-Tween 20 > OVA-Tween 40 > OVA-Tween 80 > OVA-Tween 60. Correlation analysis revealed a significant association between the structure and interfacial properties and the emulsifying and foaming performance of OVA-Tween (p < 0.05). These results demonstrated that Tween can significantly enhance the emulsifying and foaming properties of OVA. The findings provide a theoretical basis for the application of the novel OVA-Tween emulsifier in regulating OVA-based dairy products and baked foods.
Collapse
Affiliation(s)
- Qixin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanyu Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenyan Liu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanping Ye
- Jiangxi Riyuan Food Co., Shangrao 334604, China
| | | | - Huina Zheng
- Guangdong Ocean University, College of Food Science and Technology, Zhanjiang 524088, China.
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Riyuan Food Co., Shangrao 334604, China; Jiangxi Zixi Bread Technology Development Co., Fuzhou 335300, China.
| |
Collapse
|
6
|
Yao Y, Feng J, Ao N, Zhang Y, Zhang J, Wang Y, Liu C, Wang M, Yu C. Natural agents derived Pickering emulsion enabled by silica nanoparticles with enhanced antibacterial activity against drug-resistant bacteria. J Colloid Interface Sci 2025; 678:1158-1168. [PMID: 39288711 DOI: 10.1016/j.jcis.2024.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
The emergence of antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) has become a global health challenge due to the overuse of antibiotics. Natural substances including enzymes and essential oils have shown great potential as alternative treatment options. However, the combinational use of these natural agents remains challenging due to the denaturation of enzymes upon direct contact with oil. In this study, we report the design of a Pickering emulsion containing two natural antibacterial agents, lysozyme and tea tree oil, stabilized by fractal silica nanoparticles. In this design, the enzyme activity is kept and the volatility problem of tea tree oil is mitigated. Due to synergistic bacterial cell wall digestion and membrane disruption functions, potent bactericidal efficacy in vitro against drug-resistant bacteria is achieved. The therapeutic potential is further demonstrated in a wound healing model with drug-resistant bacteria infection, better than a synthetic antibiotic, Ampicillin. This study opens new avenues for the development of natural product-based antimicrobial treatments with promising application potential.
Collapse
Affiliation(s)
- Yining Yao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiayou Feng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Niqi Ao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ye Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Meiyan Wang
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
7
|
Schroën K, Shen X, Hasyyati FI, Deshpande S, van der Gucht J. From theoretical aspects to practical food Pickering emulsions: Formation, stabilization, and complexities linked to the use of colloidal food particles. Adv Colloid Interface Sci 2024; 334:103321. [PMID: 39486347 DOI: 10.1016/j.cis.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
We noticed that in literature, the term Pickering emulsion (PE) is used as soon as ingredients contain particles, and in this review, we ask ourselves if that is done rightfully so. The basic behavior taking place in particle-stabilized emulsions leads to the conclusion that the desorption energy of particles is generally high making particles highly suited to physically stabilize emulsions. Exceptions are particles with extreme contact angles or systems with very low interfacial tension. Particles used in food and biobased applications are soft, can deform when adsorbed, and most probably have molecules extending into both phases thus increasing desorption energy. Besides, surface-active components will be present either in the ingredients or generated by the emulsification process used, which will reduce the energy of desorption, either by reduced interfacial tension, or changes in the contact angle. In this paper, we describe the relative relevance of these aspects, and how to distinguish them in practice. Practical food emulsions may derive part of their stability from the presence of particles, but most likely have mixed interfaces, and are thus not PEs. Especially when small particles are used to stabilize (sub)micrometer droplets, emulsions may become unstable upon receiving a heat treatment. Stability can be enhanced by connecting the particles or creating network that spans the product, albeit this goes beyond classical Pickering stabilization. Through the architecture of PEs, special functionalities can be created, such as reduction of lipid oxidation, and controlled release features.
Collapse
Affiliation(s)
- Karin Schroën
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands..
| | - Xuefeng Shen
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Fathinah Islami Hasyyati
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Siddharth Deshpande
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Jasper van der Gucht
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
8
|
Cao R, Wang B, Bai T, Zhu Y, Cheng J, Zhang J. Structural and functional impacts of glycosylation-induced modifications in rabbit myofibrillar proteins. Int J Biol Macromol 2024; 283:137583. [PMID: 39577516 DOI: 10.1016/j.ijbiomac.2024.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Rabbit meat, recognized for its nutritional value, is gaining global attention. However, the inferior functional properties of rabbit myofibrillar proteins lead to quality degradation during the production process. Glycosylation represents an effective method for enhancing protein functionality. This study investigated the glycosylation modification of rabbit myofibrillar proteins. The results demonstrated that solubility of glucose-glycosylated products increased by 34 %, while the reduction capacity improved from 0.15 mg/mL to 1.6 mg/mL. The·OH free radical scavenging ability increased from 63.94 % to 94.21 %. β-Glucan-glycosylated products exhibited the highest thermal stability, and their DPPH free radical scavenging rate increased from 19.68 % to 76.21 %. Glycosylation also induced changes in protein conformation, characterized by a 10-30 °C increase in thermal denaturation peak temperature, gradual attenuation of endogenous fluorescence intensity, gradual enhancement of λmax redshift, and a 30-40 % decrease in surface hydrophobicity. Molecular docking simulations revealed that the primary interactions between glucose, lactose, and β-Glucan with myofibrillar proteins involve hydrogen bonds and van der Waals forces. In conclusion, glycosylation can effectively improve the functional properties of proteins, contributing to the development and production of high-quality, stable, and nutritious rabbit meat products.
Collapse
Affiliation(s)
- Ruiqi Cao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Zhu
- Chongqing General Station of Animal Husbandry Technology Extension, Chongqing 401331, PR China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
9
|
Aghababaei F, McClements DJ, Pignitter M, Hadidi M. A comprehensive review of processing, functionality, and potential applications of lentil proteins in the food industry. Adv Colloid Interface Sci 2024; 333:103280. [PMID: 39216401 DOI: 10.1016/j.cis.2024.103280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
There is a pressing need for sustainable sources of proteins to address the escalating food demands of the expanding global population, without damaging the environment. Lentil proteins offer a more sustainable alternative to animal-derived proteins (such as those from meat, fish, eggs, or milk). They are abundant, affordable, protein rich, nutritious, and functional, which makes them highly appealing as ingredients in the food, personal care, cosmetics, pharmaceutical and other industries. In this article, the chemical composition, nutritional value, and techno-functional properties of lentil proteins are reviewed. Then, recent advances on the extraction, purification, and modification of lentil proteins are summarized. Hurdles to the widespread utilization of lentil proteins in the food industry are highlighted, along with potential strategies to surmount these challenges. Finally, the potential applications of lentil protein in foods and beverages are discussed. The intention of this article is to offer an up-to-date overview of research on lentil proteins, addressing gaps in the knowledge related to their potential nutritional benefits and functional advantages for application within the food industry. This includes exploring the utilization of lentil proteins as nanocarriers for bioactive compounds, emulsifiers, edible inks for 3D food printing, meat analogs, and components of biodegradable packaging.
Collapse
Affiliation(s)
| | | | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Austria
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Austria.
| |
Collapse
|
10
|
Park JH, Lee YB, Lee SH, Ko E, Imm JY. Combination of Milk Polar Lipids and Casein Hydrolysate as a Healthy Emulsifier for Ice Cream. Food Sci Anim Resour 2024; 44:1389-1402. [PMID: 39554821 PMCID: PMC11564146 DOI: 10.5851/kosfa.2024.e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/19/2024] Open
Abstract
The demand for healthy ingredients in food products including ice cream, is continuously increasing. The potential of a combination of milk polar lipids (MPL) and casein hydrolysate (CH) to replace synthetic emulsifiers such as diacetyl tartaric acid esters of monoglycerides (DATEM), in ice cream production was investigated. Changes in particle size, emulsion stability, and interfacial tension of model emulsions (milk protein, casein:whey=8:2, w/v) were analyzed after the addition of MPL, CH, and their combination (MPL+CH). The use of MPL+CH reduced interfacial tension and increased αs- and β-casein displacement from the surface of cream layers compared to the addition of MPL alone. The addition of MPL+CH improved ice cream overrun to levels comparable to those of control ice cream containing DATEM (0.3%, w/v), without adversely affecting melt rate or microstructure. Confocal laser scanning microscopy revealed that ice cream prepared with MPL+CH formed a thick protein and coalesced fat layer on the surface of air cells that might help enhance overrun. These findings suggest that the combination of MPL (0.3%, w/v) and CH (0.03%, w/v) can be used as a potential emulsifier alternative to replace chemically synthesized emulsifiers such as DATEM.
Collapse
Affiliation(s)
- Ji-Hwa Park
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Yu Bin Lee
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Sung Ho Lee
- Research Institute of Food and
Biotechnology, SPC Group, Seoul 08826, Korea
| | - Eunkyung Ko
- Research and Development Team,
Baskinrobbins Korea, SPC Group, Seoul 06737, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| |
Collapse
|
11
|
Rocchi R, Di Mattia C, Gabriele G, Neri L, Pittia P. Influence of Solvent Polarity on Crocin Content and Surface Properties of Saffron ( Crocus sativus L.) Extracts. Molecules 2024; 29:5144. [PMID: 39519785 PMCID: PMC11547778 DOI: 10.3390/molecules29215144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The saffron composition is being widely studied for authenticity and traceability, but very few works have been carried out to investigate the relationship between the chemical and physico-chemical properties of saffron solutes and their technological functionality in colloidal systems. This study aims at evaluating the surface properties of saffron extracts obtained using solvents of different polarities to achieve extracts with different compositions in terms of the pattern and content of polar and medium polarity crocins. The air-water surface was evaluated alone and in the presence of Tween 20 at different surfactant-extract ratios. Saffron extracts were able to decrease the surface tension of the aqueous phase, indicating the presence of surface-active compounds. In the mixed saffron extract-Tween 20 systems, competitive adsorption at the air-water interface occurred when the surfactant was present at a low concentration, while at concentrations higher than the CMC, Tween 20 hindered the adsorption of the extract surface-active compounds. The results highlight the interesting technological functionality of saffron extracts for applications in colloidal systems. To better exploit their use in the design and development of formulated foods, nutraceutics and pharma products, further studies are needed to unravel the relationship between the composition of saffron extracts and corresponding surface activity.
Collapse
Affiliation(s)
- Rachele Rocchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy
| | - Carla Di Mattia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (G.G.); (L.N.); (P.P.)
| | - Gaia Gabriele
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (G.G.); (L.N.); (P.P.)
| | - Lilia Neri
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (G.G.); (L.N.); (P.P.)
| | - Paola Pittia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (G.G.); (L.N.); (P.P.)
| |
Collapse
|
12
|
Ricardo F, Reyes LH, Cruz JC, Wiedman GR, Alvarez Solano OA, Pradilla D. In Silico Evaluation and Experimental Validation of Interfacial Properties in 3-5 Residue Peptides. J Phys Chem B 2024; 128:10272-10285. [PMID: 39378314 DOI: 10.1021/acs.jpcb.4c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Predicting the interfacial properties of peptides is important for replacing oil-derived surfactants in cosmetics, oil, and agricultural applications. This work validated experimentally the estimations of surface tension at the critical micelle concentration (STCMC) of six peptides performed through a random forest (RF) model in a previous contribution. In silico interfacial tensions of the peptides were obtained in the system decane-water, and dilational experiments were applied to elucidate the foaming potential. The RF model accurately classified the peptides into high and low potential to reduce the STCMC. The simulations at the decane-water interface correctly identified peptides with high, intermediate, and low interfacial properties, and the dilational rheology allowed the estimation of the possible potential of three peptides to produce foams. This study sets the basis for identifying surface-active peptides, but future work is necessary to improve the estimations and the correlation between dilational properties and foam stabilization.
Collapse
Affiliation(s)
- Fabián Ricardo
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H Reyes
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Gregory R Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | | | - Diego Pradilla
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
13
|
Risse K, Drusch S. (Non)linear Interfacial Rheology of Tween, Brij and Span Stabilized Oil-Water Interfaces: Impact of the Molecular Structure of the Surfactant on the Interfacial Layer Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39126646 PMCID: PMC11363120 DOI: 10.1021/acs.langmuir.4c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
During emulsification and further processing (e.g., pasteurizing), the oil-water interface is mechanically and thermally stressed, which can lead to oil droplet aggregation and coalescence, depending on the interfacial properties. Currently, there is a lack of insights into the impact of the molecular structure (headgroup and FA chain) of low molecular weight emulsifiers (LME) on the resulting interfacial properties. Additionally, the crystallization/melting of the oil/the emulsifier is often neglected within interfacial rheological experiments. Within this study, the stability of interfaces formed by Tween, Span or Brij was determined as a function of their molecular structure, taking crystallization effects of the LME into account. The headgroup was kept constant while varying the FA, or vice versa. The interfacial film properties (viscoelasticity) were investigated at different temperatures using dilatational and interfacial shear rheology. Both the headgroup and the FA chain impacted the interfacial properties. For the same FA composition, a rather small hydrophobic headgroup resulted in a higher packed interface. The interfacial elasticity increased with increased FA chain length (C12 to C18). This seemed to be particularly the case when the emulsifier crystallized on the interface among cooling. In the case of a densely packed interface, network formation due to chain crystallization of the LME's FA chains occurs during the cooling step. The resulting interface shows predominantly elastic behavior.
Collapse
Affiliation(s)
- Kerstin Risse
- Technische Universität
Berlin, Faculty III Process
Sciences, Institute of Food Technology and Food Chemistry, Department
of Food Technology and Food Material Science, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stephan Drusch
- Technische Universität
Berlin, Faculty III Process
Sciences, Institute of Food Technology and Food Chemistry, Department
of Food Technology and Food Material Science, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
14
|
Lu Y, Zhang Y, Zhang R, Gao Y, Miao S, Mao L. Different interfaces for stabilizing liquid-liquid, liquid-gel and gel-gel emulsions: Design, comparison, and challenges. Food Res Int 2024; 187:114435. [PMID: 38763682 DOI: 10.1016/j.foodres.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yanhui Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
15
|
Khakpour S, Hosano N, Moosavi-Nejad Z, Farajian AA, Hosano H. Advancing Tumor Therapy: Development and Utilization of Protein-Based Nanoparticles. Pharmaceutics 2024; 16:887. [PMID: 39065584 PMCID: PMC11279530 DOI: 10.3390/pharmaceutics16070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Protein-based nanoparticles (PNPs) in tumor therapy hold immense potential, combining targeted delivery, minimal toxicity, and customizable properties, thus paving the way for innovative approaches to cancer treatment. Understanding the various methods available for their production is crucial for researchers and scientists aiming to harness these nanoparticles for diverse applications, including tumor therapy, drug delivery, imaging, and tissue engineering. This review delves into the existing techniques for producing PNPs and PNP/drug complexes, while also exploring alternative novel approaches. The methods outlined in this study were divided into three key categories based on their shared procedural steps: solubility change, solvent substitution, and thin flow methods. This classification simplifies the understanding of the underlying mechanisms by offering a clear framework, providing several advantages over other categorizations. The review discusses the principles underlying each method, highlighting the factors influencing the nanoparticle size, morphology, stability, and functionality. It also addresses the challenges and considerations associated with each method, including the scalability, reproducibility, and biocompatibility. Future perspectives and emerging trends in PNPs' production are discussed, emphasizing the potential for innovative strategies to overcome current limitations, which will propel the field forward for biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Shirin Khakpour
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran
| | - Amir A. Farajian
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
16
|
Yang Z, Barbhai S, Ji B, Feng J. Effect of surface viscoelasticity on top jet drops produced by bursting bubbles. SOFT MATTER 2024; 20:4868-4877. [PMID: 38700115 DOI: 10.1039/d4sm00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Jet drops resulting from bubble bursting at a liquid surface play a key role in various mass transfer processes across the interface, including sea spray aerosol generation and pathogen transmission. However, the impact of structurally compound interfaces, characterized by complex surface rheology introduced by surface-active contaminants, on the jet drop ejection still remains unclear. Here, we experimentally investigate the influence of surface viscoelasticity on the size and velocity of the top jet drops from surface bubble bursting, examining both pure protein and mixed protein-surfactant solutions. We document that for bubble bursting at a pure-protein-laden surface where surface elasticity dominates, the increase in Ec, i.e. the interfacial elastocapillary number as the ratio between the effects of interfacial elasticity and capillarity, efficiently increases the radius and decreases the velocity of the top jet drop, ultimately inhibiting the jet drop ejection. On the other hand, considering the mixed protein-surfactant solution, we show that the top jet drop radius and velocity exhibit a different variation trend with Ec, which is attributed to the additional dissipation on the capillary waves as well as the retardation and resistance on the converging flow for jet formation from surface viscoelasticity. Our work may advance the understanding of bubble bursting dynamics at contaminated liquid surfaces and shed light on the potential influence of surface viscoelasticity on the generation of bubble bursting aerosols.
Collapse
Affiliation(s)
- Zhengyu Yang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Sainath Barbhai
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Bingqiang Ji
- School of Astronautics, Beihang University, Beijing 100191, China.
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
17
|
Ren S, Du Y, Zhang J, Zhao K, Guo Z, Wang Z. Commercial Production of Highly Rehydrated Soy Protein Powder by the Treatment of Soy Lecithin Modification Combined with Alcalase Hydrolysis. Foods 2024; 13:1800. [PMID: 38928742 PMCID: PMC11203182 DOI: 10.3390/foods13121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The low rehydration properties of commercial soy protein powder (SPI), a major plant-based food ingredient, have limited the development of plant-based foods. The present study proposes a treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the rehydration of soy protein powder, as well as other processing properties (emulsification, viscosity). The results show that the soy protein-soy lecithin complex powder, which is hydrolyzed for 30 min (SPH-SL-30), has the smallest particle size, the smallest zeta potential, the highest surface hydrophobicity, and a uniform microstructure. In addition, the value of the ratio of the α-helical structure/β-folded structure was the smallest in the SPH-SL-30. After measuring the rehydration properties, emulsification properties, and viscosity, it was found that the SPH-SL-30 has the shortest wetting time of 3.04 min, the shortest dispersion time of 12.29 s, the highest solubility of 93.17%, the highest emulsifying activity of 32.42 m2/g, the highest emulsifying stability of 98.33 min, and the lowest viscosity of 0.98 pa.s. This indicates that the treatment of soy lecithin modification combined with Alcalase hydrolysis destroys the structure of soy protein, changes its physicochemical properties, and improves its functional properties. In this study, soy protein was modified by the treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the processing characteristics of soy protein powders and to provide a theoretical basis for its high-value utilization in the plant-based food field.
Collapse
Affiliation(s)
- Shuanghe Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| | - Yahui Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| | - Jiayu Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| | - Kuangyu Zhao
- Fang Zheng Comprehensive Product Quality Inspection and Testing Center, Fangzheng County, Harbin 150800, China;
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.R.); (Y.D.); (J.Z.); (Z.G.)
| |
Collapse
|
18
|
Feng N, Hu J, Liang S, Yang X, Zhu X, Feng Y, Zhao X, Tang F, Yang J, Wu Q. Physical and oxidative stability of flaxseed oil-in-water emulsions prepared by natural lignin-carbohydrate complex. Int J Biol Macromol 2024; 270:132154. [PMID: 38734331 DOI: 10.1016/j.ijbiomac.2024.132154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Flaxseed oil, rich in α-linolenic acid, plays a crucial role in various physiological processes. However, its stability presents certain challenges. In this study, the natural lignin-carbohydrate complex (LCC) was used to prepare the physical and oxidative stability of flaxseed oil-in-water emulsions. The LCC was characterized by HPLC, GPC, and FT-IR. The stability of emulsions was evaluated by viscosity, modulus, and micro-morphology changes. Then, the oxidation products were monitored by UV-vis spectrophotometer and HPLC. The results revealed that the high internal phase emulsion (HIPE) was successfully prepared with 2.5 wt% LCC at an oil/water ratio of 75/25 (v/v). Small droplet size (13.361 μm) and high viscosity (36,500 mPa·s) were found even after 30-day storage. Steric interactions of the LCC play a crucial role in ensuring stability, intricately linked to the interfacial properties of the emulsion. Meanwhile, the oxidative stability of α-linolenic acid in the encapsulated flaxseed oil was significantly higher than that in the bulk flaxseed oil. The results revealed that the LCC as a suitable emulsifier opens a new window for the storage of functional lipids rich in polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Nianjie Feng
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiaxin Hu
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Shuang Liang
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xu Yang
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaotian Zhu
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Xiangdong Zhao
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fei Tang
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Qian Wu
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
19
|
Liu Y, Wang Z, Lv L, Wang L, Li D, Miao X, Zhan H. Characterisation of a casein-/whey protein concentrate-Antarctic krill oil emulsion system and improvement of its storage stability. J Microencapsul 2024; 41:190-203. [PMID: 38602138 DOI: 10.1080/02652048.2024.2335152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
AIMS To develop Antarctic krill oil emulsions with casein and whey protein concentrate (WPC) and study their physicochemical properties and storage stability. METHODS Emulsions were prepared by homogenisation and ultrasonication. The properties of the emulsions were investigated via ultraviolet ray spectroscopy, dynamic light scattering, confocal laser scanning microscope, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Fourier transform infra-red spectrometer, and fluorescence spectrum. Shelf life was predicted by the Arrhenius model. RESULTS Casein- and WPC-krill oil emulsions were well formed; the mean particle diameters were less than 128.19 ± 0.64 nm and 158 ± 1.56 nm, the polymer dispersity indices were less than 0.26 ± 0.01 and 0.27 ± 0.01, and the zeta potential were around -46.88 ± 5.02 mV and -33.51 ± 2.68 mV, respectively. Shelf life was predicted to be 32.67 ± 1.55 days and 29.62 ± 0.65 days (40 °C), 27.69 ± 1.15 days and 23.58 ± 0.14 days (50 °C), 24.02 ± 0.15 days and 20.1 ± 0.08 days (60 °C). CONCLUSION The prepared krill oil emulsions have great potential to become a new krill oil supplement.
Collapse
Affiliation(s)
- Yujia Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Ziyang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Lu Lv
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Dalian, Liaoning, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, China
| | - Honglei Zhan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
20
|
MacWilliams SV, Clulow AJ, Gillies G, Beattie DA, Krasowska M. Recent advances in studying crystallisation of mono- and di-glycerides at oil-water interfaces. Adv Colloid Interface Sci 2024; 326:103138. [PMID: 38522289 DOI: 10.1016/j.cis.2024.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
This review focuses on the current understanding regarding lipid crystallisation at oil-water interfaces. The main aspects of crystallisation in bulk lipids will be introduced, allowing for a more comprehensive overview of the crystallisation processes within emulsions. Additionally, the properties of an emulsion and the impact of lipid crystallisation on emulsion stability will be discussed. The effect of different emulsifiers on lipid crystallisation at oil-water interfaces will also be reviewed, however, this will be limited to their impact on the interfacial crystallisation of monoglycerides and diglycerides. The final part of the review highlights the recent methodologies used to study crystallisation at oil-water interfaces.
Collapse
Affiliation(s)
- Stephanie V MacWilliams
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Graeme Gillies
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
| | - David A Beattie
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
21
|
Liu Y, Wu Q, Zhang J, Mao X. Effect of synergism of sucrose ester and xanthan gum on the stability of walnut milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1909-1919. [PMID: 37884470 DOI: 10.1002/jsfa.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Single emulsifiers have an effect on the stability of plant protein drinks, giving some improvement. Emulsifiers are more effective in maintaining emulsion stability when combined with polysaccharides such as xanthan gum. In this paper, we studied the food-grade emulsifier sucrose ester and measured the average particle size, polydispersity value, zeta potential, microrheological properties, microstructure and creaming index related to walnut protein emulsion by constructing a walnut protein emulsion simulation system. SDS-PAGE and low-field NMR were used to analyze the relative molecular masses of emulsions and the water distribution of emulsions, respectively, to further investigate the synergistic effects of sucrose esters and xanthan gum on the ease of emulsification and intrinsic mechanisms of different molecular weight proteins of walnut protein emulsions. RESULTS The results indicate that the synergistic effect of sucrose esters and xanthan gum was to stabilize emulsions better than single emulsifiers. Xanthan gum and protein may form protein-polysaccharide complexes, as well as the hydrophobic interaction between sucrose ester and xanthan gum. The properties of xanthan gum can improve the stability of the emulsion by affecting the mechanical properties of walnut protein emulsion, and the combination of sucrose ester and xanthan gum can better stabilize large protein molecules. CONCLUSION The results not only provide a theoretical basis for the stability of plant protein emulsion systems, but also provide technical support for the production and processing of large-molecule plant proteins into emulsions in this field for improving their stability, and also provide more possibilities for other types of emulsions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang, China
| | - Qingzhi Wu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang, China
| | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang, China
| |
Collapse
|
22
|
Liu Y, Wu Q, Zhang J, Yan W, Mao X. Food emulsions stabilized by proteins and emulsifiers: A review of the mechanistic explorations. Int J Biol Macromol 2024; 261:129795. [PMID: 38290641 DOI: 10.1016/j.ijbiomac.2024.129795] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The stability of food emulsions is the basis for other properties. During their production and processing, emulsions tend to become unstable due to their thermodynamic instability, and it is usually necessary to add emulsifiers and proteins to stabilize emulsions. It becomes crucial to study the intrinsic mechanisms of emulsifiers and proteins and their joint stabilization of food emulsions. This paper summarizes the research on intrinsic mechanisms of food emulsions stabilized by emulsifiers and proteins in recent years. The destabilization and stabilization of emulsions are related to the added surfactants. The properties, type, and concentration of emulsifiers determine the stability of emulsions, and the emulsifiers can be classified into different types (e.g., ionic or nonionic, solid or liquid) according to their properties and sources. The physicochemical properties of proteins (e.g., spatial conformation, hydrophobicity) and the composition of proteins can also determine the stability of emulsions, and emulsions stabilized by emulsifiers and proteins together not only depend on these factors but also have a great relationship with the mutual combination and competition between the two. The instability and stability of emulsions are related to factors such as interfacial interaction forces, the rheological nature of the interface, and the added surfactant.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China
| | - Qingzhi Wu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China
| | - Wenbo Yan
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China
| | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China.
| |
Collapse
|
23
|
Han W, Chai X, Zaaboul F, Sun Y, Tan CP, Liu Y. Synergistic effect of hydrophilic polyglycerol fatty acid esters and protein on the stability of interfacial membrane in low-fat aerated emulsions with different homogenization conditions. Food Chem 2024; 435:137584. [PMID: 37774617 DOI: 10.1016/j.foodchem.2023.137584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
This study investigates the impact of various chain lengths of hydrophilic polyglycerol fatty acid esters (HPGEs), namely SWA-10D, M-7D and M-10D on protein interactions and their influence on the surface morphology and interfacial properties of low-fat aerated emulsions under different pressures conditions. M-7D and M-10D samples exhibited larger particle sizes, higher ζ-potential and rougher surface compared to SWA-10D sample at 1 % concentration of HPGEs. Consequently, M-7D and M-10D samples demonstrated lower values of G', G'', and higher values tan δ at the oil-water interface as pressure increased, thereby promoting the formation of less viscoelastic structures. M-7D sample, characterized by lower content of α-helix structures, resulted in an observable redshift in the NH and CO groups of the protein. Molecular docking analysis affirmed that M-7D sample exhibited a lower absolute binding energy value, indicating stronger interaction with the protein compared to other samples, ultimately contributing to the unstable interfacial membrane formed.
Collapse
Affiliation(s)
- Wanjun Han
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xiuhang Chai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Farah Zaaboul
- Food and Biomaterials Group, School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom
| | - Yanwen Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Joshi R, Sutariya SG, Salunke P. Effect of Different Molecular Weight Hyaluronic Acids on Skim Milk Functional Properties. Foods 2024; 13:690. [PMID: 38472803 DOI: 10.3390/foods13050690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Hyaluronic acid (HA), a naturally occurring polysaccharide with recognized health benefits, has gained approval for use in the food industry as a food additive, ingredient, and health supplement in numerous countries. HA can increase viscosity in solutions and is available commercially in various molecular weights (MW) depending on end applications. Nevertheless, no research has explored the impact of different MW HAs on functionality, rheological properties, and texture-building benefits in the dairy product matrix wherein they are incorporated. Therefore, the objective of this study was to evaluate how varying MWs of HA-specifically 8 kDa, 320 kDa, 980 kDa, and 2550 kDa at 0.25% (w/w) concentration-impact rheological characteristics, functional attributes, heat stability, protein stability, protein structure, and protein fractions within skim milk. The addition of HA led to an increase in the apparent viscosity of all samples. A higher G″ value over G' values for all HA samples was observed in frequency sweep, indicating the absence of interparticle interactions between HA particles. Protein stability and heat stability were significantly lower for 980 kDa and 2550 kDa HA as compared to the control and 8 kDa HA samples. As the MW increased, WHC, emulsion properties, and foaming stability notably increased. However, reversed results were found in the case of foaming activity. Moreover, no significant changes were observed in the percent area of individual protein fractions and the hydrodynamic diameter of protein particles. This study would help to understand the effect of HA when incorporated in dairy products for water binding or enhancement in viscosity-based applications.
Collapse
Affiliation(s)
- Rutvi Joshi
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Suresh G Sutariya
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Prafulla Salunke
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
25
|
Badia-Olmos C, Sánchez-García J, Laguna L, Zúñiga E, Mónika Haros C, Maria Andrés A, Tarrega A. Flours from fermented lentil and quinoa grains as ingredients with new techno-functional properties. Food Res Int 2024; 177:113915. [PMID: 38225151 DOI: 10.1016/j.foodres.2023.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
The need to provide novel, nutritious plant-based products requires seeking high-value, sustainable protein sources, like quinoa and lentils, having an increased digestibility and lacking antinutrients. Fungal fermentation has evidenced enhanced nutritional value of flours obtained from these grains. However, research into techno-functional properties, essential to the new product development, is lacking. This study investigated the techno-functional properties of flours made from lentil and quinoa after fermenting them with Pleurotus ostreatus and subjecting them to two drying techniques (lyophilisation and hot air drying). In both cases, the fermentation led to noteworthy improvements in swelling and water holding capacity, especially in those lyophilised than those dried. In contrast, the emulsifying, foaming, thickening, and gelling capacities decreased significantly. The loss of abilities was more severe for dried grains than for lyophilized ones. The thermomechanical analysis of the fermented flours showed lower thickening and gelling potential compared to untreated flours. Microscopy images revealed that the state and structure of starch granules were affected by both fermentation and drying processes. Starch granules in lentils were partly pre-gelatinised and trapped in the cotyledon cell, resulting in limited thickening and gelling abilities. In contrast, in quinoa, starch underwent pre-gelatinisation and retrogradation during the fermentation process, promoting the production of resistant starch and increasing fibre content. This study presents the potential of treated flours as ingredients possessing unique attributes compared to protein and fibre-rich conventional products.
Collapse
Affiliation(s)
- Celia Badia-Olmos
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustín Escardino Benlloch 7, 46980 Paterna, Valencia (Spain)
| | - Janaina Sánchez-García
- Institute of Food Engineering, Universitat Politècnica de València (FoodUPV), Camino de Vera s/n, 46022 Valencia (Spain)
| | - Laura Laguna
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustín Escardino Benlloch 7, 46980 Paterna, Valencia (Spain)
| | - Elena Zúñiga
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustín Escardino Benlloch 7, 46980 Paterna, Valencia (Spain)
| | - Claudia Mónika Haros
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustín Escardino Benlloch 7, 46980 Paterna, Valencia (Spain)
| | - Ana Maria Andrés
- Institute of Food Engineering, Universitat Politècnica de València (FoodUPV), Camino de Vera s/n, 46022 Valencia (Spain)
| | - Amparo Tarrega
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/ Agustín Escardino Benlloch 7, 46980 Paterna, Valencia (Spain).
| |
Collapse
|
26
|
Song G, Zhao S, Wang J, Zhao K, Zhao J, Liang H, Liu R, Li YY, Hu C, Qu J. Enzyme-enhanced acidogenic fermentation of waste activated sludge: Insights from sludge structure, interfaces, and functional microflora. WATER RESEARCH 2024; 249:120889. [PMID: 38043351 DOI: 10.1016/j.watres.2023.120889] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Anaerobic fermentation is widely installed to recovery valuable resources and energy as CH4 from waste activated sludge (WAS), and its implementation in developing countries is largely restricted by the slow hydrolysis, poor efficiency, and complicate inert components therein. In this study, enzyme-enhanced fermentation was conducted to improve sludge solubilization from 283 to 7728 mg COD/L and to enhance volatile fatty acids (VFAs) yield by 58.6 % as compared to the conventional fermentation. The rapid release of organic carbon species, especially for tryptophan- and tyrosine-like compounds, to outer layer of extracellular polymeric substance (EPS) occurred to reduce the structural complexity and improve the sludge biodegradability towards VFAs production. Besides, upon enzymatic pretreatment the simultaneous exposure of hydrophilic and hydrophobic groups on sludge surfaces increased the interfacial hydrophilicity. By quantitative analysis via interfacial thermodynamics and XDLVO theory, it was confirmed that the stronger hydrophilic repulsion and energy barriers in particle interface enhanced interfacial mass transfer and reactions involved in acidogenic fermentation. Meanwhile, these effects stimulate the fermentation functional microflora and predominant microorganism, and the enrichment of the hydrolytic and acid-producing bacteria in metaphase and the proliferation of acetogenic bacteria, e.g., Rubrivivax (+9.4 %), in anaphase also benefits VFAs formation. This study is practically valuable to recovery valuable VFAs as carbon sources and platform chemicals from WAS and agriculture wastes.
Collapse
Affiliation(s)
- Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - He Liang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Shi R, Gantumur MA, Gao Z, Li J, Sukhbaatar N, Jiang Z, Mu Z. Evaluating the role of glycyrrhizic acid on the dynamic stabilization mechanism of the emulsion prepared by α-Lactalbumin: Experimental and silico approaches. Food Chem 2023; 429:136772. [PMID: 37453334 DOI: 10.1016/j.foodchem.2023.136772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
The role of glycyrrhizic acid (GA) on the dynamic stabilization mechanism of the α-Lactalbumin (α-La) emulsion was evaluated in this study. Smaller particle size and higher zeta potential value were observed in the α-La/GA emulsion as compared to the α-La emulsion. Ultra-high-resolution microscopy revealed that the interfacial film formed around oil droplets by α-La/GA complex was thicker compared to that of either α-La or GA. The appearance of a new peak at 1679 cm-1 in FTIR of the α-La/GA emulsion attributed to the stretching vibration of CO, providing evidence of the formation of a stable emulsion system. The results from dynamic molecular simulation showed GA induced the formation of an interfacial adsorption layer at the oil-water interface, reducing the migration ability of GA. The findings indicate that the presence of GA in the α-La emulsion effectively enhances its stability, highlighting its potential as a valuable emulsifying agent for various industrial applications.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China; National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China; Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zengli Gao
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China
| | - Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Narantuya Sukhbaatar
- School of Industrial Technology, Mongolian University of Science and Technology, 14191, Baga toiruu 34, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China.
| |
Collapse
|
28
|
Tao F, Han Q, Yang P. Interface-mediated protein aggregation. Chem Commun (Camb) 2023; 59:14093-14109. [PMID: 37955330 DOI: 10.1039/d3cc04311h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The aggregation of proteins at interfaces has significant roles and can also lead to dysfunction of different physiological processes. The interfacial effects on the assembly and aggregation of biopolymers are not only crucial for a comprehensive understanding of protein biological functions, but also hold great potential for advancing the state-of-the-art applications of biopolymer materials. Recently, there has been remarkable progress in a collaborative context, as we strive to gain control over complex interfacial assembly structures of biopolymers. These biopolymer structures range from the nanoscale to mesoscale and even macroscale, and are attained through the rational design of interactions between biological building blocks and surfaces/interfaces. This review spotlights the recent advancements in interface-mediated assembly and properties of biopolymer materials. Initially, we introduce the solid-liquid interface (SIL)-mediated biopolymer assembly that includes the inorganic crystalline template effect and protein self-adoptive deposition through phase transition. Next, we display the advancement of biopolymer assembly instigated by the air-water interface (AWI) that acts as an energy conversion station. Lastly, we discuss succinctly the assembly of biopolymers at the liquid-liquid interface (LLI) along with their applications. It is our hope that this overview will stimulate the integration and progression of the science of interfacial assembled biopolymer materials and surfaces/interfaces.
Collapse
Affiliation(s)
- Fei Tao
- Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, school of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qian Han
- Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, school of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Peng Yang
- Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, school of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
29
|
Sarraf M, Naji‐Tabasi S, Beig‐Babaei A, Moros JE, Sánchez MC, Franco JM, Tenorio‐Alfonso A. Improving the structure and properties of whey protein emulsion gel using soluble interactions with xanthan and basil seed gum. Food Sci Nutr 2023; 11:6907-6919. [PMID: 37970390 PMCID: PMC10630812 DOI: 10.1002/fsn3.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 11/17/2023] Open
Abstract
Applying hydrocolloids in the structure of protein emulsion gel can improve its properties. Interaction of whey protein concentrate (WPC) (5%) with xanthan gum (XG) and basil seed gum (BSG) at different concentrations (0.2%, 0.4%, and 0.6%) was investigated to improve mechanical and structural properties of emulsion gel. Results illustrated that gums created a stronger structure around the oil droplets, which confocal images approved it. Also, the particle size decreased and uniformed by cooperating 0.6% gum in comparison with WPC (46.87 μm). The lowest and highest hardness values were observed in emulsion gel formed by WPC (1.27 N) and 0.6BSG: WPC (3.03 N), respectively. Also, the increase of gum concentration had a positive on consistency parameter of texture, so the value was 11.48 N s in WPC emulsion gel and it reached 0.6BSG: WPC (25.71 N s) and 0.6XG: WPC (19.96 N s). Evaluating the stability of the treatments by centrifugation indicated that 0.6BSG: WPC (89.10%) and 0.6XG: WPC (74%) had the highest level of stability. Increasing gum concentration increased the consistency and viscosity. Also, the viscoelastic properties of emulsion gel improved by 0.6% BSG. The elastic modulus of the WPC, 0.6XG: WPC, and 0.6BSG: WPC emulsion gels at the same frequency (1 Hz) was 240.90, 894.59, and 1185.61 Pa, respectively. In general, the interaction of WPC solution with hydrocolloids, especially BSG, is suggested to prepare more stable and elastic emulsion gels.
Collapse
Affiliation(s)
- Mozhdeh Sarraf
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Sara Naji‐Tabasi
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Adel Beig‐Babaei
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - José E. Moros
- Department of Chemical Engineering, ETSI, Pro2TecS – Chemical Process and Product Technology Research CenterUniversidad de HuelvaHuelvaSpain
| | - M. Carmen Sánchez
- Department of Chemical Engineering, ETSI, Pro2TecS – Chemical Process and Product Technology Research CenterUniversidad de HuelvaHuelvaSpain
| | - José M. Franco
- Department of Chemical Engineering, ETSI, Pro2TecS – Chemical Process and Product Technology Research CenterUniversidad de HuelvaHuelvaSpain
| | - Adrián Tenorio‐Alfonso
- Department of Chemical Engineering, ETSI, Pro2TecS – Chemical Process and Product Technology Research CenterUniversidad de HuelvaHuelvaSpain
| |
Collapse
|
30
|
Adofo YK, Nyankson E, Agyei-Tuffour B, Amoako C, Duodu CP, Gbogbo S, Saalia FK. Chicken Feather Protein Dispersant for Effective Crude Oil Dispersion in the Marine Environment. ACS OMEGA 2023; 8:34948-34958. [PMID: 37780021 PMCID: PMC10536068 DOI: 10.1021/acsomega.3c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
Various studies report that aside from the adverse impact of the crude oil on the marine environment, there is the likelihood that chemical dispersants used on the surface of water as oil-treating agents themselves possess a degree of toxicity, which have additional effects on the environment. To eliminate the subject of toxicity, there exist several materials in nature that have the ability to form good emulsions, and such products include protein molecules. In this study, chicken feathers which are known to contain ≥90% protein were used to formulate a novel dispersant to disperse crude oil in seawater (35 ppt). Protein from chicken feathers was extracted and synthesized into the chicken feather protein (CFP) dispersant using deionized water as a solvent. Emulsions formed from CFP-synthesized dispersants were stable over a considerably long period of time, whereas the droplet sizes of the emulsion formed were on the average very small in diameter, making droplet coalescence very slow. The CFP dispersants exhibited moderate surface and interfacial activity at normal seawater salinity. Using the US EPA's baffled flask test, at 800 and 1000 mg/ml CFP surfactant-to-oil ratios, dispersion effectiveness values of 56.92 and 68.64 vol % were obtained, respectively, which show that CFP has a great potential in crude oil dispersion. Moreover, the acute toxicity test performed on Nile tilapia showed that CFP was practically nontoxic with an LC50 value of more than 100 mg/L after 96 h of exposure. The results obtained showed that the CFP dispersant is environmentally friendly.
Collapse
Affiliation(s)
- Yaw Kwakye Adofo
- Material
Science and Engineering Department, School of Engineering Sciences, University of Ghana, Legon-Accra LG 77, Ghana
| | - Emmanuel Nyankson
- Material
Science and Engineering Department, School of Engineering Sciences, University of Ghana, Legon-Accra LG 77, Ghana
| | - Benjamin Agyei-Tuffour
- Material
Science and Engineering Department, School of Engineering Sciences, University of Ghana, Legon-Accra LG 77, Ghana
| | - Christian Amoako
- Material
Science and Engineering Department, School of Engineering Sciences, University of Ghana, Legon-Accra LG 77, Ghana
| | - Collins Prah Duodu
- Department
of Marine and Fisheries Sciences, School of Biological Sciences, University of Ghana, Legon-Accra LG 77, Ghana
| | - Selassie Gbogbo
- Material
Science and Engineering Department, School of Engineering Sciences, University of Ghana, Legon-Accra LG 77, Ghana
| | - Firibu K. Saalia
- Department
of Food Process Engineering, School of Engineering Sciences, University of Ghana, Legon-Accra LG 77, Ghana
| |
Collapse
|
31
|
Liu C, Chen F. Study on the Stability Mechanism of Peanut OBs Extracted with the Aqueous Enzymatic Method. Foods 2023; 12:3446. [PMID: 37761154 PMCID: PMC10527780 DOI: 10.3390/foods12183446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, the internal relationships among oil bodies (OBs), the protein-phospholipid interactions in aqueous phase, oil-water interface behavior, and the stability of reconstituted OBs were analyzed from the bulk phase, interface, and macro perspectives, and the stability mechanism of OBs was discussed. OB proteins and phospholipids were combined through hydrophobic and electrostatic interactions, resulting in the stretching of protein conformation. OB proteins and phospholipids act synergistically to increase interface pressure and the rate of increase in interface pressure with relatively stable elastic behavior, which is beneficial to the formation and stability of interfacial films. When OBs were reconstituted by an OB protein-phospholipid complex system, phospholipids bound to OB proteins through hydrophobic and electrostatic interactions. OB proteins and phospholipids uniformly covered the oil droplet surface of reconstituted OBs to form a stable interfacial film, which maintained the stability of OBs. The addition of phospholipids significantly reduced the particle size of OBs prepared by OB proteins in a dose-dependent manner, and particle size decreased with the increase in phospholipid content (p < 0.05). Phospholipids increased the net surface charge, enhanced electrostatic repulsion, and improved the physicochemical stability of reconstituted OBs. The stability mechanism elucidated in this study provides a theoretical basis for the demulsification of peanut OBs.
Collapse
Affiliation(s)
- Chen Liu
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
32
|
Frempong KEB, He G, Kuang M, Jun P, Xue M, Wei Y, Zhou J. Improvement of amphipathic properties with molecular structure unfolding and activation of cottonseed protein as ultra stable and safe emulsifier by deamidation. Int J Biol Macromol 2023; 247:125802. [PMID: 37442501 DOI: 10.1016/j.ijbiomac.2023.125802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
By-product cottonseed proteins are excellent options for numerous applications due to their superior properties and lower cost. However, its complex folded structure and large molecular weight lead to lower reactivity and insufficient amphiphilicity. Cottonseed protein isolate (CPI) is less-soluble in water. Therefore, we improved the amphiphilicity of CPI with associated hydrolysis, molecular structure unfolding, and activation by alkaline-induced deamidation (at 24, 36, and 72 h) and produced three cottonseed protein hydrolysates CPH 24, 36, and 72. FTIR/UV-CD measurements confirmed the conformational changes and conversion of the structural content. Particle size decreased 2503.4-771.8 nm, while surface hydrophobicity (133.5-326.7), carboxyl content (1.13 × 10־3-2.09 × 10־3), and flexibility increased, signifying hydrolysis, unfolding, and amphiphilicity improvement. Longer deamidation (CPH 72) exhibited the best properties, its prepared emulsions were long-term stable under all the environmental stresses without visible phase separation after at least 40 days of storage except at pH 4. Compared to CPI, it had smaller droplets (939.3-264.9 nm) and larger absolute ζ-potential (-26.5 to -58.0 mV). From the in-vitro cytotoxicity test, deamidated CPI is extremely safer than commonly used synthetic surfactants. This research provides a new method for producing multifunctional emulsifiers from CPI, which could be utilized in the development of functional foods/non-foods.
Collapse
Affiliation(s)
- Kwame Eduam Baiden Frempong
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Guiqiang He
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Meng Kuang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, PR China.
| | - Peng Jun
- Sanya National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, PR China
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
| | - Yanxia Wei
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Jian Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
33
|
Endo Y, Samandari M, Karvar M, Mostafavi A, Quint J, Rinoldi C, Yazdi IK, Swieszkowski W, Mauney J, Agarwal S, Tamayol A, Sinha I. Aerobic exercise and scaffolds with hierarchical porosity synergistically promote functional recovery post volumetric muscle loss. Biomaterials 2023; 296:122058. [PMID: 36841214 PMCID: PMC10085854 DOI: 10.1016/j.biomaterials.2023.122058] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Volumetric muscle loss (VML), which refers to a composite skeletal muscle defect, most commonly heals by scarring and minimal muscle regeneration but substantial fibrosis. Current surgical interventions and physical therapy techniques are limited in restoring muscle function following VML. Novel tissue engineering strategies may offer an option to promote functional muscle recovery. The present study evaluates a colloidal scaffold with hierarchical porosity and controlled mechanical properties for the treatment of VML. In addition, as VML results in an acute decrease in insulin-like growth factor 1 (IGF-1), a myogenic factor, the scaffold was designed to slowly release IGF-1 following implantation. The foam-like scaffold is directly crosslinked onto remnant muscle without the need for suturing. In situ 3D printing of IGF-1-releasing porous muscle scaffold onto VML injuries resulted in robust tissue ingrowth, improved muscle repair, and increased muscle strength in a murine VML model. Histological analysis confirmed regeneration of new muscle in the engineered scaffolds. In addition, the scaffolds significantly reduced fibrosis and increased the expression of neuromuscular junctions in the newly regenerated tissue. Exercise training, when combined with the engineered scaffolds, augmented the treatment outcome in a synergistic fashion. These data suggest highly porous scaffolds and exercise therapy, in combination, may be a treatment option following VML.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA
| | - Mehran Karvar
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA
| | - Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Iman K Yazdi
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Joshua Mauney
- Department of Urology and Biomedical Engineering, University of California, Irvine, Irvine, CA, 92868, USA
| | - Shailesh Agarwal
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06269, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Shen Q, Zheng W, Han F, Dai J, Song R, Li J, Li Y, Li B, Chen Y. Quantitative analysis and interfacial properties of mixed pea protein isolate-phospholipid adsorption layer. Int J Biol Macromol 2023; 232:123487. [PMID: 36736980 DOI: 10.1016/j.ijbiomac.2023.123487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Proteins and low-molecular-weight (LMW) surfactants are widely used for the physical stabilization of many emulsion-based food products. This study investigated the oil-water interfacial behavior between pea protein isolate (PPI) and phospholipid (PL). The emulsions prepared with different concentrations of PPI and PL were stabilized by their synergetic or competitive adsorption at the oil-water interface. In addition, the quantitative proteomics results could illustrate the displacements of proteins by PL. The result showed that the vicilin (7S) could be preferentially displaced by PL. Meanwhile, the results of quartz crystal microbalance with dissipation (QCM-D) indicated the high affinity of legumin (11S) with PL, suggesting that the legumin possessed higher interfacial affinity to prevent interfacial displacement. This research could help us to understand the interaction and competitive adsorption between plant proteins and LMW surfactants profoundly, which could promote the development of plant protein-based emulsion beverage with improved stability.
Collapse
Affiliation(s)
- Qian Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Rong Song
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
35
|
Effect of emulsifier HLB on aerated emulsions: Stability, interfacial behavior, and aeration properties. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
36
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
37
|
Janssen F, Monterde V, Wouters AGB. Relevance of the air-water interfacial and foaming properties of (modified) wheat proteins for food systems. Compr Rev Food Sci Food Saf 2023; 22:1517-1554. [PMID: 36815740 DOI: 10.1111/1541-4337.13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
A shift from animal protein- to plant protein-based foods is crucial in transitioning toward a more sustainable global food system. Among food products typically stabilized by animal proteins, food foams represent a major category. Wheat proteins are ubiquitous and structurally diverse, which offers opportunities for exploiting them for food foam and air-water interface stabilization. Notably, they are often classified into those that are soluble in aqueous systems (albumins and globulins) and those that are not (gliadins and glutenins). However, gliadins are at least to an extent water extractable and thus surface active. We here provide a comprehensive overview of studies investigating the air-water interfacial and foaming properties of the different wheat protein fractions. Characteristics in model systems are related to the functional role that wheat proteins play in gas cell stabilization in existing wheat-based foods (bread dough, cake batter, and beer foam). Still, to further extend the applicability of wheat proteins, and particularly the poorly soluble glutenins, to other food foams, their modification is required. Different physical, (bio)chemical, and other modification strategies that have been utilized to alter the solubility and therefore the air-water interfacial and foaming properties of the gluten protein fraction are critically reviewed. Such approaches may open up new opportunities for the application of (modified) gluten proteins in other food products, such as plant-based meringues, whippable drinks, or ice cream. In each section, important knowledge gaps are highlighted and perspectives for research efforts that could lead to the rational design of wheat protein systems with enhanced functionality and overall an increased applicability in food industry are proposed.
Collapse
Affiliation(s)
- Frederik Janssen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Viena Monterde
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Arora K, Tlais AZA, Augustin G, Grano D, Filannino P, Gobbetti M, Di Cagno R. Physicochemical, nutritional, and functional characterization of gluten-free ingredients and their impact on the bread texture. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
MacWilliams SV, Clulow AJ, Kirby NM, Miller R, Boyd BJ, Gillies G, Beattie DA, Krasowska M. Isolating the interface of an emulsion using X-ray scattering and tensiometry to understand protein-modulated alkylglyceride crystallisation. J Colloid Interface Sci 2023; 630:202-214. [DOI: 10.1016/j.jcis.2022.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/25/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
40
|
Structural and Physicochemical Characterization of Extracted Proteins Fractions from Chickpea ( Cicer arietinum L.) as a Potential Food Ingredient to Replace Ovalbumin in Foams and Emulsions. Polymers (Basel) 2022; 15:polym15010110. [PMID: 36616460 PMCID: PMC9824673 DOI: 10.3390/polym15010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Chickpeas are the third most abundant legume crop worldwide, having a high protein content (14.9-24.6%) with interesting technological properties, thus representing a sustainable alternative to animal proteins. In this study, the surface and structural properties of total (TE) and sequential (ALB, GLO, and GLU) protein fractions isolated from defatted chickpea flour were evaluated and compared with an animal protein, ovalbumin (OVO). Differences in their physicochemical properties were evidenced when comparing TE with ALB, GLO, and GLU fractions. In addition, using a simple and low-cost extraction method it was obtained a high protein yield (82 ± 4%) with a significant content of essential and hydrophobic amino acids. Chickpea proteins presented improved interfacial and surface behavior compared to OVO, where GLO showed the most significant effects, correlated with its secondary structure and associated with its flexibility and higher surface hydrophobicity. Therefore, chickpea proteins have improved surface properties compared to OVO, evidencing their potential use as foam and/or emulsion stabilizers in food formulations for the replacement of animal proteins.
Collapse
|
41
|
Kühnhammer M, Gräff K, Loran E, Soltwedel O, Löhmann O, Frielinghaus H, von Klitzing R. Structure formation of PNIPAM microgels in foams and foam films. SOFT MATTER 2022; 18:9249-9262. [PMID: 36440620 DOI: 10.1039/d2sm01021f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Responsive aqueous foams are very interesting from a fundamental point of view and for various applications like foam flooding or foam flotation. In this study thermoresponsive microgels (MGs) made from poly(N-isopropyl-acrylamide) (PNIPAM) with varying cross-linker content, are used as foam stabilisers. The foams obtained are thermoresponsive and can be destabilised by increasing the temperature. The structuring of MGs inside the foam films is investigated with small-angle neutron scattering and in a thin film pressure balance. The foam films are inhomogeneous and form a network-like structure, in which thin and MG depleted zones with a thickness of ca. 30 nm are interspersed in a continuous network of thick MG containing areas with a thickness of several 100 nm. The thickness of this continuous network is related to the elastic modulus of the individual MGs, which was determined by atomic force microscopy indentation experiments. Both, the elastic moduli and foam film thicknesses, indicate a correlation to the network elasticity of the MGs predicted by the affine network model.
Collapse
Affiliation(s)
- Matthias Kühnhammer
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Kevin Gräff
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Edwin Loran
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Olaf Soltwedel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Oliver Löhmann
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Henrich Frielinghaus
- Jülich Center for Neutron Science at the Heinz Maier Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| |
Collapse
|
42
|
Li Y, Liu X, Liu H, Zhu L. Interfacial adsorption behavior and interaction mechanism in saponin–protein composite systems: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Bukreeva TV, Borodina TN, Trushina DB. Polyelectrolyte Microcapsules: On the Formation and Possibilities of Regulating Multilayer Structures. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Yan S, Xu J, Zhang S, Zhu H, Qi B, Li Y. Effect of interfacial composition on the physical stability and co-oxidation of proteins and lipids in a soy protein isolate-(−)-epigallocatechin gallate conjugate emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Effect of soy lecithin concentration on physiochemical properties and rehydration behavior of egg white protein powder: Role of dry and wet mixing. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Delahaije RJM, Sagis LMC, Yang J. Impact of Particle Sedimentation in Pendant Drop Tensiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10183-10191. [PMID: 35943288 PMCID: PMC9404539 DOI: 10.1021/acs.langmuir.2c01193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Understanding the interface-stabilizing properties of surface-active components is key in designing stable macroscopic multiphase systems, such as emulsions and foams. When poorly soluble materials are used as an interface stabilizer, the insoluble material may sediment and interfere with the analysis of interfacial properties in pendant (or hanging) drop tensiometry. Here, the impact of sedimentation of particles on the interfacial properties determined by pendant drop tensiometry was evaluated using a model system of whey protein isolate and (non surface-active) glass beads (2.2-34.7 μm). Although the glass beads did not adsorb to the air-water interface, a 1% (w/w) glass bead solution appeared to decrease the surface tension by nearly 12 mN/m after 3 h. A similar effect was shown for a mixture of whey proteins and glass beads: the addition of 1% (w/w) of glass beads led to an apparent surface tension decrease of 31 mN/m rather than the 20 mN/m observed for pure whey proteins. These effects are attributed to the sedimentation of particles near the apex of the droplet, leading to droplet shape changes, which are interpreted as a decrease in surface tension using tensiometer software. The droplet density at the apex increases due to sedimentation, and this density increase is not accounted for when fitting the droplet shape with the Young-Laplace equation. The result is the observed apparent decrease in surface tension. In contrast to the significant impact of sedimenting material on the surface tension measurements, the impact on the results of oscillatory deformations was limited. These findings show that the impact of sedimentation should be considered when studying the interface-stabilizing properties of materials with reduced solubility, such as certain plant protein extracts. The presence of such particles should be carefully considered when conducting pendant drop tensiometry.
Collapse
Affiliation(s)
- Roy J.
B. M. Delahaije
- Laboratory
of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
- FrieslandCampina
Innovation Centre, Bronland
20, 6708 WH Wageningen, The Netherlands
| | - Leonard M. C. Sagis
- Laboratory
of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Jack Yang
- Laboratory
of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
- Laboratory
of Biobased Chemistry and Technology, Wageningen
University, Bornse Weilanden
9, 6708WG Wageningen, The Netherlands
| |
Collapse
|
47
|
Zhang M, Fan L, Liu Y, Huang S, Li J. Effects of proteins on emulsion stability: The role of proteins at the oil-water interface. Food Chem 2022; 397:133726. [PMID: 35908463 DOI: 10.1016/j.foodchem.2022.133726] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
To obtain a stable protein-added emulsion system, researchers have focused on the design of the oil-water interface. This review discussed the updated details of protein adsorption behavior at the oil-water interface. We evaluated methods of monitoring interfacial proteins as well as their strengths and limitations. Based on the effects of structure on protein adsorption, we summarized the contribution of pre-changing methods to adsorption. In addition, the interaction of proteins and other surface-active molecules at the interface had been emphasized. Results showed that protein adsorption is affected by conformation, oil polarity and aqueous environments. The monitoring of interfacial proteins through spectroscopic properties in actual emulsion systems is an emerging trend. Pre-changing could improve the protein adsorption and the purpose of pre-changing of proteins is similar. In the interaction with other surface-active molecules, co-adsorption is desirable. By co-adsorption, the respective advantages can be exploited to obtain a more stable emulsion system.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengquan Huang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510931, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
48
|
Liu Y, Huang C, Wang J, Li Z, Xu Q, Chen L, Feng X, Ma M. Improving rehydration of egg white powder through modifying its physicochemistry properties by ultrasound-assisted glutaminase deamidation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
pH-dependent micellar properties of edible biosurfactant steviol glycosides and their oil-water interfacial interactions with soy proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
50
|
Nooshkam M, Varidi M, Alkobeisi F. Bioactive food foams stabilized by licorice extract/whey protein isolate/sodium alginate ternary complexes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|