1
|
Das K, Sah BK, Kundu S. Cation-induced monolayer collapse at lower surface pressure follows specific headgroup percolation. Phys Rev E 2017; 95:022804. [PMID: 28298005 DOI: 10.1103/physreve.95.022804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 11/07/2022]
Abstract
A Langmuir monolayer can be considered as a two-dimensional (2D) sheet at higher surface pressure which structurally deform with mechanical compression depending upon the elastic nature of the monolayer. The deformed structures formed after a certain elastic limit are called collapsed structures. To explore monolayer collapses at lower surface pressure and to see the effect of ions on such monolayer collapses, out-of-plane structures and in-plane morphologies of stearic acid Langmuir monolayers have been studied both at lower (≈6.8) and higher (≈9.5) subphase pH in the presence of Mg^{2+},Ca^{2+},Zn^{2+},Cd^{2+}, and Ba^{2+} ions. At lower subphase pH and in the presence of all cations, the stearic acid monolayer remains as a monolayer before collapse, which generally takes place at higher surface pressure (π_{c}>50mN/m). However, at higher subphase pH, structural changes of stearic acid monolayers occur at relatively lower surface pressure depending upon the specific dissolved ions. Among the same group elements of Mg^{2+},Ca^{2+}, and Ba^{2+}, only for Ba^{2+} ions does monolayer to multilayer transition take place from a much lower surface pressure of the monolayer, remaining, however, as a monolayer for Mg^{2+} and Ca^{2+} ions. For another same group elements of Zn^{2+} and Cd^{2+} ions, a less covered bilayer structure forms on top of the monolayer structure at lower surface pressure, which is evidenced from both x-ray reflectometry and atomic force microscopy. Fourier transform infrared spectroscopy confirms the presence of two coexisting conformations formed by the two different metal-headgroup coordinations and the monolayer to trilayer or multilayer transformation takes place when the coverage ratio of the two molecular conformations changes from the critical value (p_{c}) of ≈0.66. Such ion-specific monolayer collapses are correlated with the 2D lattice percolation model.
Collapse
Affiliation(s)
- Kaushik Das
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Bijay Kumar Sah
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| |
Collapse
|
2
|
Waidely E, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Study of the Alpha-l-Fucosidase Langmuir Monolayer at the Air–Water Interface. J Phys Chem B 2016; 120:12843-12849. [DOI: 10.1021/acs.jpcb.6b09094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric Waidely
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Abdulrahman O. Al-Youbi
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Abdulaziz S. Bashammakh
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad S. El-Shahawi
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Roger M. Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| |
Collapse
|
3
|
Casaroli-Marano RP, Sousa-Martins D, Martínez-Conesa EM, Badaró E, Nunes RP, Lima-Filho AA, Rodrigues EB, Belfort R, Maia M. Dye solutions based on lutein and zeaxanthin: in vitro and in vivo analysis of ocular toxicity profiles. Curr Eye Res 2014; 40:707-18. [PMID: 25153042 DOI: 10.3109/02713683.2014.952831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To study the safety profile of Lutein/Zeaxanthin(L/Z)-based natural dye solutions in in vitro and in vivo models. MATERIAL AND METHODS In vitro cytotoxicity and cellular growth experiments were carried out on ARPE-19 and human corneal epithelial (HCE) cell lines using different L/Z-based dye solutions, either alone or in association with brilliant blue (BB) or trypan blue (TB). Light and transmission electron microscopy studies were performed seven days after intravitreal injection of dye solutions in rabbits. Electroretinogram (ERG) recordings were taken at baseline and before histopathology. RESULTS In vitro cytotoxicity assays demonstrated that the different L/Z-based solutions (from 0.3 to 2%), either alone or in association with BB (0.025%) or TB (0.04%), did not significantly alter mitochondrial activity (≤15%) in the cell lines tested. In addition, in vitro cell growth was inhibited by up to 60% depending on the dye solution, and in direct proportion to the concentration assayed. There was no evidence of structural alterations in the neurosensory retina, retinal pigment epithelium (RPE), or choriocapillaris-choroidal complex. b-Wave ERG records showed no significant differences (±15.2%) in comparison with baseline. CONCLUSIONS L/Z-based dye solutions demonstrated a safe profile in in vitro and in vivo models, and may be a useful tool for staining intraocular structures.
Collapse
Affiliation(s)
- Ricardo P Casaroli-Marano
- Department of Ophthalmology and Visual Sciences, Instituto da Visão (IPEPO), Universidade Federal de São Paulo , São Paulo , Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Goto TE, Caseli L. Understanding the collapse mechanism in Langmuir monolayers through polarization modulation-infrared reflection absorption spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9063-9071. [PMID: 23806167 DOI: 10.1021/la402044c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The collapse of films at the air-water interface is related to a type of 2D-to-3D transition that occurs when a Langmuir monolayer is compressed beyond its stability limit. Studies on this issue are extremely important because defects in ultrathin solid films can be better understood if the molecular mechanisms related to collapse processes are elucidated. This paper explores how the changes of vibration of specific groups of lipid molecules, as revealed by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS), are affected by the monolayer collapse. Different mechanisms of collapse were studied, for those lipids that undergo constant-area collapse (such as stearic acid) and for those that undergo constant-pressure collapse (such as DPPC, DPPG, and DODAB). Lipid charges also affect the mechanism of collapse, as demonstrated for two oppositely charged lipids.
Collapse
Affiliation(s)
- Thiago Eichi Goto
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | |
Collapse
|
5
|
An intraocular dye solution based on lutein and zeaxanthin in a surrogate internal limiting membrane model: A Langmuir monolayer study. Colloids Surf B Biointerfaces 2013; 107:124-9. [DOI: 10.1016/j.colsurfb.2013.01.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/18/2022]
|
6
|
Bussières S, Cantin L, Desbat B, Salesse C. Binding of a truncated form of lecithin:retinol acyltransferase and its N- and C-terminal peptides to lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3516-3523. [PMID: 22260449 DOI: 10.1021/la203896n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lecithin:retinol acyltransferase (LRAT) is a 230 amino acid membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. A truncated form of LRAT (tLRAT), which contains the residues required for catalysis but which is lacking the N- and C-terminal hydrophobic segments, was produced to study its membrane binding properties. Measurements of the maximum insertion pressure of tLRAT, which is higher than the estimated lateral pressure of membranes, and the positive synergy factor a argue in favor of a strong binding of tLRAT to phospholipid monolayers. Moreover, the binding, secondary structure and orientation of the peptides corresponding to its N- and C-terminal hydrophobic segments of LRAT have been studied by circular dichroism and polarization-modulation infrared reflection absorption spectroscopy in monolayers. The results show that these peptides spontaneously bind to lipid monolayers and adopt an α-helical secondary structure. On the basis of these data, a new membrane topology model of LRAT is proposed where its N- and C-terminal segments allow to anchor this protein to the lipid bilayer.
Collapse
Affiliation(s)
- Sylvain Bussières
- LOEX/CUO-recherche, Centre hospitalier affilié universitaire de Québec, Hôpital du Saint-Sacrement, 1050 Chemin Ste-Foy, Québec (Québec), Canada
| | | | | | | |
Collapse
|
7
|
Caseli L, Cavalheiro RP, Nader HB, Lopes CC. Probing the interaction between heparan sulfate proteoglycan with biologically relevant molecules in mimetic models for cell membranes: a Langmuir film study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1211-7. [PMID: 22285741 DOI: 10.1016/j.bbamem.2012.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/02/2012] [Accepted: 01/13/2012] [Indexed: 12/19/2022]
Abstract
Investigating the role of proteoglycans associated to cell membranes is fundamental to comprehend biochemical process that occurs at the level of membrane surfaces. In this paper, we exploit syndecan-4, a heparan sulfate proteoglycan obtained from cell cultures, in lipid Langmuir monolayers at the air-water interface. The monolayer served as a model for half a membrane, and the molecular interactions involved could be evaluated with tensiometry and vibrational spectroscopy techniques. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) employed in a constant surface pressure regime showed that the main chemical groups for syndecan-4 were present at the air-water interface. Subsequent monolayer decompression and compression showed surface pressure-area isotherms with a large expansion for the lipid monolayers interacting with the cell culture reported to over-express syndecan-4, which was also an indication that the proteoglycan was inserted in the lipid monolayer. The introduction of biological molecules with affinity for syndecam-4, such as growth factors, which present a key role in biochemical process of cell signaling, changed the surface properties of the hybrid film, leading to a model, by which the growth factor binds to the sulfate groups present in the heparan sulfate chains. The polypeptide moiety of syndecan-4 responds to this interaction changing its conformation, which leads to lipid film relaxation and further monolayer condensation.
Collapse
Affiliation(s)
- Luciano Caseli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | | | | | | |
Collapse
|
8
|
Dech S, Cramer T, Ladisch R, Bruns N, Tiller JC. Solid−Solid Interface Adsorption of Proteins and Enzymes in Nanophase-Separated Amphiphilic Conetworks. Biomacromolecules 2011; 12:1594-601. [DOI: 10.1021/bm1015877] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephan Dech
- Chair of Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Tobias Cramer
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Hermann-Herder-Strasse 3a (Westbau), 79104 Freiburg, Germany
| | - Reinhild Ladisch
- Chair of Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Nico Bruns
- Department of Chemistry, University of Basel, Switzerland, Klingelbergstr. 80, 4056 Basel, Switzerland
| | - Joerg C. Tiller
- Chair of Biomaterials and Polymer Science, Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| |
Collapse
|
9
|
Goto TE, Lopez RF, Iost RM, Crespilho FN, Caseli L. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2667-2675. [PMID: 21314156 DOI: 10.1021/la104822r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.
Collapse
Affiliation(s)
- Thiago E Goto
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo , Diadema, São Paulo 09972-270, Brazil
| | | | | | | | | |
Collapse
|
10
|
Calvez P, Demers E, Boisselier E, Salesse C. Analysis of the contribution of saturated and polyunsaturated phospholipid monolayers to the binding of proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1373-9. [PMID: 21210634 DOI: 10.1021/la104097n] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The binding of peripheral proteins to membranes results in different biological effects. The large diversity of membrane lipids is thought to modulate the activity of these proteins. However, information on the selective binding of peripheral proteins to membrane lipids is still largely lacking. Lipid monolayers at the air/water interface are useful model membrane systems for studying the parameters responsible for peripheral protein membrane binding. We have thus measured the maximum insertion pressure (MIP) of two proteins from the photoreceptors, Retinitis pigmentosa 2 (RP2) and recoverin, to estimate their binding to lipid monolayers. Photoreceptor membranes have the unique characteristic that more than 60% of their fatty acids are polyunsaturated, making them the most unsaturated natural membranes known to date. These membranes are also thought to contain significant amounts of saturated phospholipids. MIPs of RP2 and recoverin have thus been measured in the presence of saturated and polyunsaturated phospholipids. MIPs higher than the estimated lateral pressure of biomembranes have been obtained only with a saturated phospholipid for RP2 and with a polyunsaturated phospholipid for recoverin. A new approach was then devised to analyze these data properly. In particular, a parameter called the synergy factor allowed us to highlight the specificity of RP2 for saturated phospholipids and recoverin for polyunsaturated phospholipids as well as to demonstrate clearly the preference of RP2 for saturated phospholipids that are known to be located in microdomains.
Collapse
Affiliation(s)
- Philippe Calvez
- LOEX/CUO-Recherche, Centre Hospitalier Affilié Universitaire de Québec, Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | | | | | | |
Collapse
|
11
|
Ying X, Cheng G, Zhao K. Preparation and characterization of protein imprinted agarose microspheres. Polym Bull (Berl) 2010. [DOI: 10.1007/s00289-009-0239-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers. Biochimie 2009; 91:718-33. [DOI: 10.1016/j.biochi.2009.03.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/25/2009] [Indexed: 11/18/2022]
|
13
|
Chen B, Pernodet N, Rafailovich MH, Bakhtina A, Gross RA. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13457-64. [PMID: 18991420 DOI: 10.1021/la8019952] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.
Collapse
Affiliation(s)
- Bo Chen
- NSF I/UCRC for Biocatalysis and Bioprocessing of Macromolecules, Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, New York 11201, USA
| | | | | | | | | |
Collapse
|