1
|
Cousins JRL, Duffy BR, Wilson SK, Mottram NJ. Young and Young-Laplace equations for a static ridge of nematic liquid crystal, and transitions between equilibrium states. Proc Math Phys Eng Sci 2022; 478:20210849. [PMID: 35370444 PMCID: PMC8966048 DOI: 10.1098/rspa.2021.0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
Motivated by the need for greater understanding of systems that involve interfaces between a nematic liquid crystal, a solid substrate and a passive gas that include nematic-substrate-gas three-phase contact lines, we analyse a two-dimensional static ridge of nematic resting on a solid substrate in an atmosphere of passive gas. Specifically, we obtain the first complete theoretical description for this system, including nematic Young and Young-Laplace equations, and then, making the assumption that anchoring breaking occurs in regions adjacent to the contact lines, we use the nematic Young equations to determine the continuous and discontinuous transitions that occur between the equilibrium states of complete wetting, partial wetting and complete dewetting. In particular, in addition to continuous transitions analogous to those that occur in the classical case of an isotropic liquid, we find a variety of discontinuous transitions, as well as contact-angle hysteresis, and regions of parameter space in which there exist multiple partial wetting states that do not occur in the classical case.
Collapse
Affiliation(s)
- Joseph R. L. Cousins
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
- School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8QQ, UK
| | - Brian R. Duffy
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
| | - Stephen K. Wilson
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
| | - Nigel J. Mottram
- Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
- School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
|
3
|
Lam MAYH, Kondic L, Cummings LJ. Effects of spatially-varying substrate anchoring on instabilities and dewetting of thin nematic liquid crystal films. SOFT MATTER 2020; 16:10187-10197. [PMID: 33103707 DOI: 10.1039/d0sm01416h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Partially wetting nematic liquid crystal (NLC) films on substrates are unstable to dewetting-type instabilities due to destabilizing solid/NLC interaction forces. These instabilities are modified by the nematic nature of the films, which influences the effective solid/NLC interaction. In this work, we focus on the influence of imposed substrate anchoring on the instability development. The analysis is carried out within a long-wave formulation based on the Leslie-Ericksen description of NLC films. Linear stability analysis of the resulting equations shows that some features of the instability, such as emerging wavelengths, may not be influenced by the imposed substrate anchoring. Going further into the nonlinear regime, considered via large-scale GPU-based simulations, shows however that nonlinear effects may play an important role, in particular in the case of strong substrate anchoring anisotropy. Our simulations show that instability of the film develops in two stages: the first stage involves formation of ridges that are perpendicular to the local anchoring direction; and the second involves breakup of these ridges and formation of drops, whose final distribution is influenced by the anisotropy imposed by the substrate. Finally, we show that imposing more complex substrate anisotropy patterns allows us to reach basic understanding of the influence of substrate-imposed defects in director orientation on the instability evolution.
Collapse
Affiliation(s)
- Michael-Angelo Y-H Lam
- U. S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | | | | |
Collapse
|
4
|
Ravi B, Bhattacharjee M, Ghosh A, Bandyopadhyay D. Fabrication of pixelated liquid crystal nanostructures employing the contact line instabilities of droplets. NANOSCALE 2019; 11:1680-1691. [PMID: 30620017 DOI: 10.1039/c8nr08400a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A liquid crystal (LC) droplet resting on a poly-dimethylsiloxane substrate could rapidly spread upon solvent vapour annealing to form a non-uniform film. While the solvophobic surfaces restricted the spreading of the droplet to form a thicker film upon solvent annealing, the solvophilic substrates allowed the formation of a thinner film under similar conditions. Withdrawal of the solvent exposure caused rapid evaporation of the solvent molecules from the film, especially near the retracting contact-line to form microscale LC-droplets, which shrunk into nanoscopic ones after evaporation of the excess solvent. The thinner films on solvophilic surfaces allowed the formation of droplets with smaller size and periodicity as small as ∼100 nm and ∼200 nm, respectively. Furthermore, the use of a patterned substrate could impose a large-area ordering on the nanodroplets. A theoretical model for an evaporating film of LC-solution revealed that the spacing of nanodroplets could be decided by the interplay of stabilizing and destabilizing components of capillary force while van der Waals interaction played a supportive role when the film was ultrathin near the contact line. The micro/nanodroplets thus formed showed an anomalous oscillatory rotational motion originating from the difference in the Laplace pressure near contact lines under the influence of an external electric field. The application of the Lorenz force to these droplets showed translation and rotational motions followed by ejection of satellite droplets.
Collapse
Affiliation(s)
- Bolleddu Ravi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India.
| | | | | | | |
Collapse
|
5
|
de Souza RF, Lenzi EK, de Souza RT, Evangelista LR, Li Q, Zola RS. Surface induced twist in nematic and chiral nematic liquid crystals: stick-slip-like and constrained motion. SOFT MATTER 2018; 14:2084-2093. [PMID: 29485156 DOI: 10.1039/c7sm02122d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface driven pattern formation is an intriguing phenomenon in the liquid crystal field. Owing to its ability to transmit torque, one can generate different patterns by propagating distortions on the optical wavelength scale in the sample from the surface. Here, we theoretically investigate (from the elasticity point of view) twist deformations induced by a rotating easy axis at one surface, by considering the anchoring energy and surface viscosity of nematic and chiral nematic samples. The model is solved analytically in the limit of strong anchoring and numerically for a low anchoring strength situation. Such rotation could be induced, in principle, by light-controlling the orientation of an azobenzene monolayer coated at one of the glass substrates or by an in-plane rotating field. We discuss the role of the surface parameters and the different distortions, and calculate light transmission using the Jones method. Three different regimes are identified: free twist, stick-slip twist, and constrained twist. The results obtained here may be relevant for liquid crystal active waveplates and for determining surface viscosity and the azimuthal anchoring energy.
Collapse
Affiliation(s)
- R F de Souza
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Ravi B, Chakraborty S, Bhattacharjee M, Mitra S, Ghosh A, Gooh Pattader PS, Bandyopadhyay D. Pattern-Directed Ordering of Spin-Dewetted Liquid Crystal Micro- or Nanodroplets as Pixelated Light Reflectors and Locomotives. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1066-1076. [PMID: 28026170 DOI: 10.1021/acsami.6b12182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemical pattern directed spin-dewetting of a macroscopic droplet composed of a dilute organic solution of liquid crystal (LC) formed an ordered array of micro- and nanoscale LC droplets. Controlled evaporation of the spin-dewetted droplets through vacuum drying could further miniaturize the size to the level of ∼90 nm. The size, periodicity, and spacing of these mesoscale droplets could be tuned with the variations in the initial loading of LC in the organic solution, the strength of the centripetal force on the droplet, and the duration of the evaporation. A simple theoretical model was developed to predict the spacing between the spin-dewetted droplets. The patterned LC droplets showed a reversible phase transition from nematic to isotropic and vice versa with the periodic exposure of a solvent vapor and its removal. A similar phase transition behavior was also observed with the periodic increase or reduction of temperature, suggesting their usefulness as vapor or temperature sensors. Interestingly, when the spin-dewetted droplets were confined between a pair of electrodes and an external electric field was applied, the droplets situated at the hydrophobic patches showed light-reflecting properties under the polarization microscopy highlighting their importance in the development of micro- or nanoscale LC displays. The digitized LC droplets, which were stationary otherwise, showed dielectrophoretic locomotion under the guidance of the external electric field beyond a threshold intensity of the field. Remarkably, the motion of these droplets could be restricted to the hydrophilic zones, which were confined between the hydrophobic patches of the chemically patterned surface. The findings could significantly contribute in the development of futuristic vapor or temperature sensors, light reflectors, and self-propellers using the micro- or nanoscale digitized LC droplets.
Collapse
Affiliation(s)
- Bolleddu Ravi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India
| | - Snigdha Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India
| | - Mitradip Bhattacharjee
- Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India
| | - Abir Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur, Uttar Pradesh 208016, India
| | - Partho Sarathi Gooh Pattader
- Department of Chemical Engineering, Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Roscioni OM, Zannoni C. Molecular Dynamics Simulations and their Application to Thin-film Devices. UNCONVENTIONAL THIN FILM PHOTOVOLTAICS 2016. [DOI: 10.1039/9781782624066-00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The performance of devices based on organic semiconductors strongly depends on the molecular organisation in thin films. Due to the intrinsic complexity of these systems, a combination of theoretical modelling and experimental techniques is often the key to achieve a full understanding of their inner working. Here, we introduce the modelling of organic semiconductors by means of molecular dynamics simulations. We describe the basic theoretical framework of the technique and review the most popular class of force fields used to model organic materials, paying particular attention to the peculiarities of confined systems like nano-thick films. Representative studies of the organisation of organic functional materials in thin film phases are also reviewed.
Collapse
Affiliation(s)
- Otello Maria Roscioni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna viale Risorgimento 4 40136 Bologna Italy
| | - Claudio Zannoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
8
|
Vanzo D, Ricci M, Berardi R, Zannoni C. Wetting behaviour and contact angles anisotropy of nematic nanodroplets on flat surfaces. SOFT MATTER 2016; 12:1610-1620. [PMID: 26670582 DOI: 10.1039/c5sm02179k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have studied the wetting behaviour of liquid crystal nanodroplets deposited on a planar surface, modelling the mesogens with Gay-Berne ellipsoids and the support surface with a slab of Lennard-Jones (LJ) spherical particles whose mesogen-surface affinity can be tuned. A crystalline and an amorphous planar surface, both showing planar anchoring, have been investigated: the first is the (001) facet of a LJ fcc crystal, the second is obtained from a disordered LJ glass. In both cases we find that the deposited nanodroplet is, in general, elongated and that the contact angle changes around its contour. Simulations for the crystalline substrate show that the angle of contact turns reversibly from anisotropic to isotropic when crossing the clearing transition. As far as we know this is a novel, not yet explored effect for thermotropic liquid crystals, that we hope will stimulate experimental investigations.
Collapse
Affiliation(s)
- Davide Vanzo
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy.
| | | | | | | |
Collapse
|
9
|
Jeridi H, Gharbi MA, Othman T, Blanc C. Capillary-induced giant elastic dipoles in thin nematic films. Proc Natl Acad Sci U S A 2015; 112:14771-6. [PMID: 26554001 PMCID: PMC4672823 DOI: 10.1073/pnas.1508865112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby defects. Here, we report, for the first time to our knowledge, the existence of giant elastic dipoles arising from particles dispersed in free nematic liquid crystal films. We discuss the role of capillarity and film thickness on the dimensions of the dipoles and explain their main features with a simple 2D model. Coupling of capillarity with nematic elasticity could offer ways to tune finely the spatial organization of complex colloidal systems.
Collapse
Affiliation(s)
- Haifa Jeridi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, 2092, Tunis, Tunisia
| | - Mohamed A Gharbi
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Tahar Othman
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, 2092, Tunis, Tunisia
| | - Christophe Blanc
- Laboratoire Charles Coulomb, UMR 5521 CNRS-Université de Montpellier, Montpellier 34095, F-France
| |
Collapse
|
10
|
Ravi B, Mukherjee R, Bandyopadhyay D. Solvent vapour mediated spontaneous healing of self-organized defects of liquid crystal films. SOFT MATTER 2015; 11:139-146. [PMID: 25372336 DOI: 10.1039/c4sm02111h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultrathin liquid crystal films showed a nematic to isotropic transition when exposed to solvent vapour for a short duration while a reverse isotropic to nematic transition was observed when the film was isolated from the solvent exposure. The phase transitions were associated with the appearance and fading of surface patterns as the solvent molecules diffused into and out of the film matrix, resulting in the destruction or restoration of the orientational order. A long-time solvent vapour exposure caused the dewetting of the film on the surface, which was demonstrated by the formation of holes and their growth in size with the progress of time. Even at this stage, withdrawal of the solvent exposure produced an array of nematic fingers, which nearly self-healed the dewetted holes. The change in contact angle due to the phase transition coupled with the imbalance of osmotic pressure across the contact line due to the differential rate of solvent evaporation from the film and the hole helped the fingers to grow towards the centre of the hole. The appearance of the fingers upon withdrawal of the solvent exposure and their disappearance upon exposure to solvent were also found to be a nearly reversible process. These findings could significantly contribute to the development of vapour sensors and self-healing surfaces using liquid crystal thin films.
Collapse
Affiliation(s)
- Bolleddu Ravi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India.
| | | | | |
Collapse
|
11
|
Manyuhina OV. Shaping thin nematic films with competing boundary conditions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:4. [PMID: 24938505 DOI: 10.1140/epje/i2014-14048-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/05/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
Free interfaces of liquid crystals tend to minimise both capillarity and anchoring forces. Here we study nematic films in planar and radial geometries with antagonistic anchoring boundary conditions and one deformable interface. Assuming a perturbation ansatz we study possible couplings of the director configuration with the shape of free interfaces. In the long-wavelength limit independent of the surface tension, we find analytically the threshold thickness when the flat film becomes unstable. Next we quantify the bifurcation of a circular ring towards structures with m-fold rotational symmetry, induced by elastic anisotropy of the nematic director in the bulk. We believe that our simplified approach can give additional insight into elastic and capillary phenomena of materials with inherent liquid crystalline order and free interfaces.
Collapse
Affiliation(s)
- O V Manyuhina
- Nordita, Royal Institute of Technology & Stockholm University, Roslagstullsbacken 23, SE-10691, Stockholm, Sweden,
| |
Collapse
|
12
|
Rey AD, Herrera-Valencia EE. Dynamic wetting model for the isotropic-to-nematic transition over a flat substrate. SOFT MATTER 2014; 10:1611-1620. [PMID: 24651833 DOI: 10.1039/c3sm52034j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phase ordering over solid substrates is a ubiquitous and important soft material transformation process whose description incorporates wetting, anchoring and phase transition kinetics. In this paper the kinetics of the isotropic-to-nematic isothermal phase transition over a flat solid surface in a growing spherical drop is analyzed based on the Landau-de Gennes Q-tensor order parameter equations. The model, based on a previously derived interface force balance and a newly derived contact line force balance, is shown to be consistent with the generic model of conservative interface and contact line motions. The advancing dynamic contact angle equation is extracted from kinematic compatibility between the moving isotropic-nematic interface and contact line. A tractable surface phase transition kinetic model obtained by focusing on the dominant phase transition and wetting driving forces yields: (i) the constant advancing dynamic contact angle θ, and (ii) the contact line speed as a function of undercooling ΔT. It is shown that as undercooling increases, the surface phase transition mode approaches the bulk phase transition mode, such that θ approaches π. The elastic and wetting parameters that control the phase transformation process are identified and experiments for their determination are defined. These dynamic wetting and surface phase transition results significantly expand existing characterization methods of LC-substrate interfaces based on static phase transition droplet methods.
Collapse
Affiliation(s)
- Alejandro D Rey
- Department of Chemical Engineering, McGill University, 3610 University Street, H3A2B2, Montreal, QC, Canada.
| | | |
Collapse
|
13
|
Roscioni OM, Muccioli L, Della Valle RG, Pizzirusso A, Ricci M, Zannoni C. Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8950-8. [PMID: 23597166 DOI: 10.1021/la400857s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We employ atomistic molecular dynamics simulations to predict the alignment and anchoring strength of a typical nematic liquid crystal, 4-n-pentyl-4'-cyano biphenyl (5CB), on different forms of silica. In particular, we study a thin (~20 nm) film of 5CB supported on surfaces of crystalline (cristobalite) and amorphous silica of different roughness. We find that the orientational order at the surface and the anchoring strength depend on the morphology of the silica surface and its roughness. Cristobalite yields a uniform planar orientation and increases the order at the surface with respect to the bulk whereas amorphous glass has a disordering effect. Despite the low order at the amorphous surfaces, a planar orientation is established with a persistence length into the film higher than the one obtained for cristobalite.
Collapse
Affiliation(s)
- Otello Maria Roscioni
- Diartimento di Chimica Industriale Toso Montanari and INSTM, Università di Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Zola RS, Evangelista LR, Yang YC, Yang DK. Surface induced phase separation and pattern formation at the isotropic interface in chiral nematic liquid crystals. PHYSICAL REVIEW LETTERS 2013; 110:057801. [PMID: 23414046 DOI: 10.1103/physrevlett.110.057801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Indexed: 06/01/2023]
Abstract
We study the pattern formation of a chiral nematic liquid crystal under a wetting transition. In the isotropic-liquid crystal transition, a surface-enhanced effect happens and a thin liquid crystal layer forms at the substrates of the cell. In this confined system, chirality, elastic anisotropy, surface anchoring, and wetting strength interplay. A striped pattern is formed due to the chiral nature of the material and the tilted anchoring at the isotropic boundary. As the wetting layer grows from cooling the sample, first the stripes rotate through a process where dislocation defects are formed. As the wetting layer grows further, the periodicity of the stripe structure changes, and finally a splitting of the stripes occurs. Because of the unique properties of this system, new insights about pitch-thickness ratio, interface anchoring, and elastic anisotropy effect are found. Since the anchoring at the isotropic boundary is weak, the critical ratio between the thickness of the wetting layer and the helical pitch is different from that reported in the literature. We also discover that the elastic anisotropy and elastic constant ratios play a critical role in stripe formation. Because of the similarity with biological fibrous composites (twisted plywood), our system may be used as a synthetic version to mimic the naturally occurring one. We carry out a simulation study to explain the experimental results.
Collapse
Affiliation(s)
- R S Zola
- Chemical Physics Interdisciplinary Program and Liquid Crystal Institute, Kent State University, Ohio 44242, USA
| | | | | | | |
Collapse
|
15
|
Ruths M, Zappone B. Direct nanomechanical measurement of an anchoring transition in a nematic liquid crystal subject to hybrid anchoring conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8371-8383. [PMID: 22621655 DOI: 10.1021/la204746d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have used a surface forces apparatus to measure the normal force between two solid curved surfaces confining a film of nematic liquid crystal (5CB, 4'-n-pentyl-4-cyanobiphenyl) under hybrid planar-homeotropic anchoring conditions. Upon reduction of the surface separation D, we measured an increasingly repulsive force in the range D = 35-80 nm, reaching a plateau in the range D = 10-35 nm, followed by a short-range oscillatory force at D < 5 nm. The oscillation period was comparable to the cross-sectional diameter of the liquid crystal molecule and characteristic of a configuration with the molecules parallel to the surfaces. These results show that the director field underwent a confinement-induced transition from a splay-bend distorted configuration at large D, which produces elastic repulsive forces, to a uniform planar nondegenerate configuration with broken homeotropic anchoring, which does not produce additional elastic forces as D is decreased. These findings, supported by measurements of the birefringence of the confined film at different film thicknesses, provide the first direct observation of an anchoring transition on the nanometer scale.
Collapse
Affiliation(s)
- Marina Ruths
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA.
| | | |
Collapse
|
16
|
Manyuhina OV. Saddle-splay elasticity and field induced soliton in nematics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:195102. [PMID: 22466930 DOI: 10.1088/0953-8984/24/19/195102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The symmetry breaking Fréedericksz transitions, when a uniformly aligned nematic state is replaced by a homogeneously or periodically distorted state, have been extensively studied before. Here we analyse the influence of the saddle-splay elasticity on the non-linear ground state of a nematic liquid crystal in the presence of a magnetic field above the Fréedericksz threshold. We identify the bifurcation point when the localized soliton-like state is linearly unstable with respect to the perturbations of the wavevector in the direction perpendicular to the initial plane of the soliton. This instability occurs only if the ratio of the saddle-splay elastic constant to the elastic modulus of nematics in the one-constant approximation is above the critical value K24/K\ ≥0.707
Collapse
Affiliation(s)
- O V Manyuhina
- Nordita, Royal Institute of Technology & Stockholm University, Roslagstullsbacken 23, Stockholm, Sweden.
| |
Collapse
|