1
|
Lu H, Wang D, Huang D, Feng L, Zhang H, Zhu P. Product from sessile droplet evaporation of PNIPAM/water system above LCST: A block or micro/nano-particles? J Colloid Interface Sci 2023; 634:769-781. [PMID: 36565619 DOI: 10.1016/j.jcis.2022.12.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
PNIPAM as a stimuli-responsive polymer has generated extreme interests due to its versatile applications. However, there is no research report on whether PNIPAM micro/nano-particles can be extracted from its suspension after phase separation. In the present work, LCST-type phase separation in self-synthesized PNIPAM/water system was investigated in depth by dividing the DLS testing process into four stages. In addition to quenching duration, temperature rise process, quenching temperature and PNIPAM concentration all have a great influence on particle size of the suspension. Meanwhile, the steady-state rheology and dynamic viscoelasticity results show that PNIPAM micro/nano-particles in the suspension are "soft" that can deform. Finally, FE-SEM was used to observe the morphology of dehydrated PNIPAM extracted by sessile droplet evaporation under different conditions. The results indicate that these "soft" particles are easier to fuse together, do not have sufficient mechanical strength to maintain their spherical morphology after dehydration. But the above fusion can be suppressed by adjusting evaporation conditions to acquire smaller PNIPAM particles which have sufficient mechanical properties to keep their basic particle morphology. Further, by changing evaporation pressure to positive or negative pressure, dehydrated PNIPAM micro/nano-particles with excellent uniformity and separation can be obtained. This work will provide guidance for extracting micro/nano-particles from polymer/diluent systems with LCST.
Collapse
Affiliation(s)
- Hongwei Lu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Danling Wang
- Zhongce Rubber Group Co., Ltd, Hangzhou, Zhejiang 310018, China
| | - Daye Huang
- Zhongce Rubber Group Co., Ltd, Hangzhou, Zhejiang 310018, China
| | - Luyao Feng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Huapeng Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peng Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Use of Heating Configuration to Control Marangoni Circulation during Droplet Evaporation. WATER 2022. [DOI: 10.3390/w14101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present work presents a numerical study of the evaporation of a sessile liquid droplet deposited on a substrate and subjected to different heating configurations. The physical formulation accounts for evaporation, the Marangoni effect, conductive transfer in the support, radiative heating, and diffusion–convection in the droplet itself. The moving interface is solved using the Arbitrary Lagrangian–Eulerian (ALE) method. Simulations were performed using COMSOL Multiphysics. Different configurations were performed to investigate the effect of the heating conditions on the shape and intensity of the Marangoni circulations. A droplet can be heated by the substrate (different natures and thicknesses were tested) and/or by a heat flux supplied at the top of the droplet. The results show that the Marangoni flow can be controlled by the heating configuration. An upward Marangoni flow was obtained for a heated substrate and a downward Marangoni flow for a flux imposed at the top of the droplet. Using both heat sources generated two vortices with an upward flow from the bottom and a downward flow from the top. The position of the stagnation zone depended on the respective intensities of the heating fluxes. Controlling the circulation in the droplet might have interesting applications, such as the control of the deposition of microparticles in suspension in the liquid, the deposition of the solved constituent, and the enhancement of the evaporation rate.
Collapse
|
3
|
Zhu P, Zhang H, Lu H. Preparation of Polyetherimide Nanoparticles by a Droplet Evaporation-Assisted Thermally Induced Phase-Separation Method. Polymers (Basel) 2021; 13:polym13101548. [PMID: 34065994 PMCID: PMC8150268 DOI: 10.3390/polym13101548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
The droplet evaporation effect on the preparation of polyetherimide (PEI) nanoparticles by thermally induced phase separation (TIPS) was studied. PEI nanoparticles were prepared in two routes. In route I, the droplet evaporation process was carried out after TIPS. In route II, the droplet evaporation and TIPS processes were carried out simultaneously. The surface tension and shape parameters of samples were measured via a drop shape analyzer. The Z-average particle diameter of PEI nanoparticles in the PEI/dimethyl sulfoxide solution (DMSO) suspension at different time points was tested by dynamic light scattering, the data from which was used to determine the TIPS time of the PEI/DMSO solution. The natural properties of the products from both routes were studied by optical microscope, scanning electron microscope and transmission electron microscope. The results show that PEI nanoparticles prepared from route II are much smaller and more uniform than that prepared from route I. Circulation flows in the droplet evaporation were indirectly proved to suppress the growth of particles. At 30 °C, PEI solid nanoparticles with 193 nm average particle size, good uniformity, good separation and good roundness were obtained. Route I is less sensitive to temperature than route II. Samples in route I were still the accumulations of micro and nanoparticles until 40 °C instead of 30 °C in route II, although the particle size distribution was not uniform. In addition, a film structure would appear instead of particles when the evaporation temperature exceeds a certain value in both routes. This work will contribute to the preparation of polymer nanoparticles with small and uniform particle size by TIPS process from preformed polymers.
Collapse
|
4
|
Suppression of the coffee-ring effect by tailoring the viscosity of pharmaceutical sessile drops. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Zhang D, Takase S, Nagayama G. Measurement of effective wetting area at hydrophobic solid-liquid interface. J Colloid Interface Sci 2021; 591:474-482. [PMID: 33640849 DOI: 10.1016/j.jcis.2021.01.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESES The effective wetting area, a parameter somewhat different from the apparent contact area at solid-liquid interfaces, plays a significant role in surface wettability. However, determination of the effective wetting area for hydrophobic surfaces remains an open question. In the present study, we developed an electrochemical impedance method to evaluate the effective wetting area at a hydrophobic solid-liquid interface. EXPERIMENTS Patterned Si surfaces were prepared using the anisotropic wet etching method, and the water contact angle and electrochemical impedance were measured experimentally. The effective wetting area at the solid-liquid interface was examined based on the wettability and impedance results. FINDINGS The electrochemical impedance for the patterned Si surfaces increased with increasing surface hydrophobicity, whereas the effective wetting area decreased. The intermediate wetting state (i.e. partial wetting model) was confirmed at the patterned Si surfaces, and the effective wetting area was theoretically estimated. The effective wetting area predicted from the electrochemical impedance agreed well with that predicted from the partial wetting model, thereby demonstrating the validity of the electrochemical impedance method for evaluating the effective wetting area at the hydrophobic solid-liquid interface.
Collapse
Affiliation(s)
- Dejian Zhang
- Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Satoko Takase
- Department of Chemical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Gyoko Nagayama
- Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
| |
Collapse
|
6
|
Misyura S, Egorov R, Morozov V, Zaitsev A. Emergence and breakup of a cluster of ordered microparticles during the interaction of thermocapillary and thermogravitational convection. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Facile Fabrication of Natural Polyelectrolyte-Nanoclay Composites: Halloysite Nanotubes, Nucleotides and DNA Study. Molecules 2020; 25:molecules25153557. [PMID: 32759785 PMCID: PMC7436255 DOI: 10.3390/molecules25153557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022] Open
Abstract
Complexation of biopolymers with halloysite nanotubes (HNTs) can greatly affect their applicability as materials building blocks. Here we have performed a systematic investigation of fabrication of halloysite nanotubes complexes with nucleotides and genomic DNA. The binding of DNA and various nucleotide species (polyAU, UMP Na2, ADP Na3, dATP Na, AMP, uridine, ATP Mg) by halloysite nanotubes was tested using UV-spectroscopy. The study revealed that binding of different nucleotides to the nanoclay varied but was low both in the presence and absence of MgCl2, while MgCl2 facilitated significantly the binding of longer molecules such as DNA and polyAU. Modification of the nanotubes with DNA and nucleotide species was further confirmed by measurements of ζ-potentials. DNA-Mg-modified nanotubes were characterized using transmission electron (TEM), atomic force (AFM) and hyperspectral microscopies. Thermogravimetric analysis corroborated the sorption of DNA by the nanotubes, and the presence of DNA on the nanotube surface was indicated by changes in the surface adhesion force measured by AFM. DNA bound by halloysite in the presence of MgCl2 could be partially released after addition of phosphate buffered saline. DNA binding and release from halloysite nanotubes was tested in the range of MgCl2 concentrations (10–100 mM). Even low MgCl2 concentrations significantly increased DNA sorption to halloysite, and the binding was leveled off at about 60 mM. DNA-Mg-modified halloysite nanotubes were used for obtaining a regular pattern on a glass surface by evaporation induced self-assembly process. The obtained spiral-like pattern was highly stable and resisted dissolution after water addition. Our results encompassing modification of non-toxic clay nanotubes with a natural polyanion DNA will find applications for construction of gene delivery vehicles and for halloysite self-assembly on various surfaces (such as skin or hair).
Collapse
|
8
|
Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid. ENERGIES 2020. [DOI: 10.3390/en13133462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Volumetric properties such as density and isobaric thermal expansivity, and surface tension are of paramount importance for nanofluids to evaluate their ability to be used as efficient heat transfer fluids. In this work, the nanofluids are prepared by dispersing few-layer graphene in a commercial heat transfer fluid Tyfocor® LS (40:60 wt.% propylene-glycol/water) with the aid of three different nonionic surfactants: Triton X-100, Pluronic® P-123 and Gum Arabic. The density, isobaric thermal expansivity and surface tension of each of the base fluids and nanofluids are evaluated between 283.15 and 323.15 K. The influence of the mass content in few-layer graphene from 0.05 to 0.5% on these nanofluid properties was studied. The density behavior of the different proposed nanofluids is slightly affected by the presence of graphene, and its evolution is well predicted by the weight-average equation depending on the density of each component of the nanofluids. For all the analyzed samples, the isobaric thermal expansivity increases with temperature which can be explained by a weaker degree of cohesion within the fluids. The surface tension evolution of the graphene-based nanofluids is found to be sensitive to the used surfactant, its content and the few-layer graphene concentration.
Collapse
|
9
|
Chen Y, Askounis A, Koutsos V, Valluri P, Takata Y, Wilson SK, Sefiane K. On the Effect of Substrate Viscoelasticity on the Evaporation Kinetics and Deposition Patterns of Nanosuspension Drops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:204-213. [PMID: 31860312 DOI: 10.1021/acs.langmuir.9b02965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study investigates the evaporation of sessile pure water and nanosuspension drops on viscoelastic polydimethylsiloxane (PDMS) films. We varied the viscoelasticity of the PDMS films by controlling the curing ratio and categorized them into three types: stiff (10:1, 20:1, 40:1), soft (60:1, 80:1), and very soft (100:1, 120:1, 140:1, 160:1). On stiff surfaces, pure water drops initially evaporate in a constant contact radius (CCR) mode, followed by a constant contact angle mode, and finally in a mixed mode of evaporation. Nanosuspension drops follow the same trend as water drops but with a difference toward the end of their lifetimes, when a short second CCR mode is observed. Complete evaporation of nanosuspension drops on stiff substrates leads to particle deposition patterns similar to a coffee ring with cracks and deposition tails. On soft surfaces, the initial spreading is followed by a pseudo-CCR mode. Complete evaporation of nanosuspension drops on soft substrates leads to deposits in the form of a uniform ring with a sharp ox-horn profile. Unexpectedly, the initial spreading is followed by a mixed mode on very soft substrates, on which wetting ridges (WRs) pulled up by the vertical component of surface tension are clearly observed in the vicinity of the contact line (CL). As the evaporation proceeds, the decreasing contact angle breaks the force balance in the horizontal direction at the CL and gives rise to a net horizontal force, which causes the CL to recede, transferring the horizontal force to the WR. Because of the viscoelastic nature of the very soft substrate, this horizontal force acting on the WR cannot be completely countered by the bulk of the substrate underneath. As a result, the WR moves horizontally in a viscous-flow way, which also enables the CL to be continuously anchored to the ridge and to recede relative to the bulk of the substrate. Consequently, a mixed mode of evaporation occurs. Complete evaporation of nanosuspension drops on very soft substrates leads to finger-like deposits.
Collapse
Affiliation(s)
- Yuhong Chen
- Institute for Multiscale Thermofluids, School of Engineering , University of Edinburgh , The King's Buildings, Mayfield Road , Edinburgh EH9 3JL , U.K
| | - Alexandros Askounis
- Engineering, Faculty of Science , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Vasileios Koutsos
- Institute for Materials and Processes, School of Engineering , University of Edinburgh , The King's Buildings, Robert Stevenson Road , Edinburgh EH9 3FB , U.K
| | - Prashant Valluri
- Institute for Multiscale Thermofluids, School of Engineering , University of Edinburgh , The King's Buildings, Mayfield Road , Edinburgh EH9 3JL , U.K
| | | | - Stephen K Wilson
- Department of Mathematics and Statistics , University of Strathclyde , Livingstone Tower, 26 Richmond Street , Glasgow G1 1XH , U.K
| | - Khellil Sefiane
- Institute for Multiscale Thermofluids, School of Engineering , University of Edinburgh , The King's Buildings, Mayfield Road , Edinburgh EH9 3JL , U.K
| |
Collapse
|
10
|
Faille C, Lemy C, Allion-Maurer A, Zoueshtiagh F. Evaluation of the hydrophobic properties of latex microspheres and Bacillus spores. Influence of the particle size on the data obtained by the MATH method (microbial adhesion to hydrocarbons). Colloids Surf B Biointerfaces 2019; 182:110398. [PMID: 31376688 DOI: 10.1016/j.colsurfb.2019.110398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
The current experimental study investigates the influence of latex microsphere particles' size on the assessment of their hydrophilic/hydrophobic character, using the method known as "Microbial Adhesion to Hydrocarbons" (MATH). Since bacteria surfaces often change according to the environment in which they find themselves, most of the experiments here were carried out using the calibrated latex microspheres Polybeads® and Yellow-green Fluoresbrite® (Polyscience) microspheres with diameters between 0.2 μm and 4.5 μm. All the beads had a density of ˜1.05 g/cm3. The first set of experiments was performed to adapt the procedure for measurements of water contact angles to microsphere lawns. It was found that all the microspheres tested were hydrophobic, when using a water contact angle of around 110-118°. However, wide differences were observed using the MATH method. The smaller microspheres (0.2 μm, 0.5 μm +/- 0.75 μm) exhibited a poor affinity to hexadecane, even after long contact times, suggesting a hydrophilic character. In contrast, larger microspheres quickly adhered to hexadecane, which is consistent with the values obtained for the water contact angles observed. These results suggest that, at least where hydrophobic particles are concerned, the MATH method is not suitable for the assessment of the hydrophobic character of particles with diameters of less than 1.0 μm. We lastly investigated whether the data obtained for Bacillus spores could also be affected by spore size. The hydrophobicity of spores of eight Bacillus strains was analysed by both MATH and contact angle. Some discrepancies were observed between both methods but could not be related their size (length or width).
Collapse
Affiliation(s)
| | - Christelle Lemy
- UMET, CNRS, INRA, Univ. Lille, 59650 Villeneuve d'Ascq, France
| | - Audrey Allion-Maurer
- Aperam Isbergues Research Center - Solutions Dept., BP 15, 62330 Isbergues, France
| | - Farzam Zoueshtiagh
- IEMN, LIA LICS: Univ. Lille, UMR CNRS 8520, IEMN, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
11
|
Yu YS, Wang MC, Zhu YQ, Zhou JZ, Zhou A. Evaporative deposition of mono- and bi-dispersed colloids on a polydimethylsiloxane (PDMS) surface. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Goh GL, Saengchairat N, Agarwala S, Yeong WY, Tran T. Sessile droplets containing carbon nanotubes: a study of evaporation dynamics and CNT alignment for printed electronics. NANOSCALE 2019; 11:10603-10614. [PMID: 31135018 DOI: 10.1039/c9nr03261d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanotubes (CNTs) are 1-dimensional (1D) and flexible nanomaterials with high electric conductivity and a high aspect ratio. These features make CNTs highly suitable materials for the fabrication of flexible electronics. CNTs can also be made into dispersions which can be used as the feedstock material for droplet-based 3D printing technologies, e.g., inkjet printing and aerosol jet printing to fabricate printed electronics. These printing techniques involve several physical processes including deposition of ink droplets on flexible polymeric substrates such as polyimides, evaporation of the solvent and formation of thin films of CNTs, all of which have not been thoroughly investigated. Besides, alignment of the CNTs in the resultant thin films dictates their electrical performance. In this work, we examine the effect of substrate temperature and CNT concentration on the evaporation dynamics and also the alignment in the deposition patterns. Evaporation-driven self-assembly of CNTs and their preferential alignment are observed. Image analysis and Raman spectroscopy are utilised to evaluate the degree of alignment of the CNT network. It is found that the contact line dynamics depends greatly on the CNT concentration. Besides, the substrate temperature plays a significant role in determining the order of the CNTs in the drying deposition pattern. Our findings show the possibility of controlling the film morphology and the degree of alignment of CNTs for printed electronics in the printing process.
Collapse
Affiliation(s)
- Guo Liang Goh
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| | | | | | | | | |
Collapse
|
13
|
Clancy KF, Dery S, Laforte V, Shetty P, Juncker D, Nicolau DV. Protein microarray spots are modulated by patterning method, surface chemistry and processing conditions. Biosens Bioelectron 2019; 130:397-407. [DOI: 10.1016/j.bios.2018.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/13/2023]
|
14
|
Wu M, Man X, Doi M. Multi-ring Deposition Pattern of Drying Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9572-9578. [PMID: 30039975 DOI: 10.1021/acs.langmuir.8b01655] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose a theory for the multi-ring pattern of the deposits that are formed when droplets of the suspension are dried on a substrate. Assuming a standard model for the stick-slip motion of the contact line, we show that as droplets evaporate many concentric rings of deposits are formed but are taken over by a solid-circle pattern in the final stage of drying. An analytical expression is given to indicate when the ring pattern changes to a solid-circle pattern during the evaporation process. The results are in qualitative agreement with existing experiments, and the other predictions on how the evaporation rate, droplet radius, and receding contact angle affect the pattern are all subject to an experimental test.
Collapse
Affiliation(s)
- Mengmeng Wu
- Center of Soft Matter Physics and Its Applications and School of Physics and Nuclear Energy Engineering , Beihang University , Beijing 100191 , China
| | - Xingkun Man
- Center of Soft Matter Physics and Its Applications and School of Physics and Nuclear Energy Engineering , Beihang University , Beijing 100191 , China
| | - Masao Doi
- Center of Soft Matter Physics and Its Applications and School of Physics and Nuclear Energy Engineering , Beihang University , Beijing 100191 , China
| |
Collapse
|
15
|
Perrin L, Pajor-Swierzy A, Magdassi S, Kamyshny A, Ortega F, Rubio RG. Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3082-3093. [PMID: 29268600 DOI: 10.1021/acsami.7b15743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total evaporation was studied by scanning electronic microscopy, and the effects of the substrate, the particle nature, and their concentrations on these patterns are discussed.
Collapse
Affiliation(s)
- Lionel Perrin
- Departamento de Química Física I, Facultad de Química, Universidad Complutense , 28040 Madrid, Spain
| | - Anna Pajor-Swierzy
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , 30239 Cracow, Poland
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Alexander Kamyshny
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Francisco Ortega
- Departamento de Química Física I, Facultad de Química, Universidad Complutense , 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense , 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física I, Facultad de Química, Universidad Complutense , 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense , 28040 Madrid, Spain
| |
Collapse
|
16
|
Parsa M, Harmand S, Sefiane K, Bigerelle M, Deltombe R. Effect of Substrate Temperature on Pattern Formation of Bidispersed Particles from Volatile Drops. J Phys Chem B 2017; 121:11002-11017. [DOI: 10.1021/acs.jpcb.7b09700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maryam Parsa
- LAMIH
Laboratory, UMR CNRS 8201, University of Valenciennes, Valenciennes 59313, France
- University of Lille Nord de France, Rue Jules Guesde, Villeneuve d’Ascq 59658, France
| | - Souad Harmand
- LAMIH
Laboratory, UMR CNRS 8201, University of Valenciennes, Valenciennes 59313, France
- University of Lille Nord de France, Rue Jules Guesde, Villeneuve d’Ascq 59658, France
| | - Khellil Sefiane
- School
of Engineering, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JL, U.K
- International
Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Maxence Bigerelle
- LAMIH
Laboratory, UMR CNRS 8201, University of Valenciennes, Valenciennes 59313, France
- University of Lille Nord de France, Rue Jules Guesde, Villeneuve d’Ascq 59658, France
| | - Raphaël Deltombe
- LAMIH
Laboratory, UMR CNRS 8201, University of Valenciennes, Valenciennes 59313, France
- University of Lille Nord de France, Rue Jules Guesde, Villeneuve d’Ascq 59658, France
| |
Collapse
|
17
|
Lotito V, Zambelli T. Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Adv Colloid Interface Sci 2017; 246:217-274. [PMID: 28669390 DOI: 10.1016/j.cis.2017.04.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Self-assembly of quasi-spherical colloidal particles in two-dimensional (2D) arrangements is essential for a wide range of applications from optoelectronics to surface engineering, from chemical and biological sensing to light harvesting and environmental remediation. Several self-assembly approaches have flourished throughout the years, with specific features in terms of complexity of the implementation, sensitivity to process parameters, characteristics of the final colloidal assembly. Selecting the proper method for a given application amidst the vast literature in this field can be a challenging task. In this review, we present an extensive classification and comparison of the different techniques adopted for 2D self-assembly in order to provide useful guidelines for scientists approaching this field. After an overview of the main applications of 2D colloidal assemblies, we describe the main mechanisms underlying their formation and introduce the mathematical tools commonly used to analyse their final morphology. Subsequently, we examine in detail each class of self-assembly techniques, with an explanation of the physical processes intervening in crystallization and a thorough investigation of the technical peculiarities of the different practical implementations. We point out the specific characteristics of the set-ups and apparatuses developed for self-assembly in terms of complexity, requirements, reproducibility, robustness, sensitivity to process parameters and morphology of the final colloidal pattern. Such an analysis will help the reader to individuate more easily the approach more suitable for a given application and will draw the attention towards the importance of the details of each implementation for the final results.
Collapse
|
18
|
Askounis A, Kita Y, Kohno M, Takata Y, Koutsos V, Sefiane K. Influence of Local Heating on Marangoni Flows and Evaporation Kinetics of Pure Water Drops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5666-5674. [PMID: 28510453 DOI: 10.1021/acs.langmuir.7b00957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of localized heating on the evaporation of pure sessile water drops was probed experimentally by a combination of infrared thermography and optical imaging. In particular, we studied the effect of three different heating powers and two different locations, directly below the center and edge of the drop. In all cases, four distinct stages were identified according to the emerging thermal patterns. In particular, depending on heating location, recirculating vortices emerge that either remain pinned or move azimuthally within the drop. Eventually, these vortices oscillate in different modes depending on heating location. Infrared data allowed extraction of temperature distribution on each drop surface. In turn, the flow velocity in each case was calculated and was found to be higher for edge heating, due to the one-directional nature of the heating. Additionally, calculation of the dimensionless Marangoni and Rayleigh numbers yielded the prevalence of Marangoni convection. Heating the water drops also affected the evaporation kinetics by promoting the "stick-slip" regime. Moreover, both the total number of depinning events and the pinning strength were found to be highly dependent on heating location. Lastly, we report a higher than predicted relationship between evaporation rate and heating temperature, due to the added influence of the recirculating flows on temperature distribution and hence evaporation flux.
Collapse
Affiliation(s)
- Alexandros Askounis
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) and ‡Department of Mechanical Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yutaku Kita
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) and ‡Department of Mechanical Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kohno
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) and ‡Department of Mechanical Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- CREST, Japan Science and Technology Agency , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yasuyuki Takata
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) and ‡Department of Mechanical Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- CREST, Japan Science and Technology Agency , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Vasileios Koutsos
- School of Engineering, The University of Edinburgh , King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Khellil Sefiane
- School of Engineering, The University of Edinburgh , King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
- Tianjin Key Lab of Refrigeration Technology, Tianjin University of Commerce , Tianjin City 300134, P.R. China
| |
Collapse
|
19
|
BÉG OANWAR, BASIR MFAISALM, UDDIN MJ, ISMAIL AIM. NUMERICAL STUDY OF SLIP EFFECTS ON UNSTEADY ASYMMETRIC BIOCONVECTIVE NANOFLUID FLOW IN A POROUS MICROCHANNEL WITH AN EXPANDING/CONTRACTING UPPER WALL USING BUONGIORNO’S MODEL. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519417500592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, the unsteady fully developed forced convective flow of viscous incompressible biofluid that contains both nanoparticles and gyrotactic microorganisms in a horizontal micro-channel is studied. Buongiorno’s model is employed. The upper channel wall is either expanding or contracting and permeable and the lower wall is static and impermeable. The plate separation is therefore a function of time. Velocity, temperature, nanoparticle species (mass) and motile microorganism slip effects are taken into account at the upper wall. By using the appropriate similarity transformation for the velocity, temperature, nanoparticle volume fraction and motile microorganism density, the governing partial differential conservation equations are reduced to a set of similarity ordinary differential equations. These equations under prescribed boundary conditions are solved numerically using the Runge–Kutta–Fehlberg fourth-fifth-order numerical quadrature in the MAPLE symbolic software. Excellent agreement between the present computations and solutions available in the literature (for special cases) is achieved. The key thermofluid parameters emerging are identified as Reynolds number, wall expansion ratio, Prandtl number, Brownian motion parameter, thermophoresis parameter, Lewis number, bioconvection Lewis number and bioconvection Péclet number. The influence of all these parameters on flow velocity, temperature, nanoparticle volume fraction (concentration) and motile microorganism density function is elaborated. Furthermore, graphical solutions are included for skin friction, wall heat transfer rate, nanoparticle mass transfer rate and microorganism transfer rate. Increasing expansion ratio is observed to enhance temperatures and motile microorganism density. Both nanoparticle volume fraction and microorganism increases with an increase in momentum slip. The dimensionless temperature and microorganism increases as wall expansion increases. Applications of the study arise in advanced nanomechanical bioconvection energy conversion devices, bio-nano-coolant deployment systems, etc.
Collapse
Affiliation(s)
- O. ANWAR BÉG
- Fluid Mechanics, Biomechanics and Propulsion, Aeronautical and Mechanical, Engineering Division, Room G77, Newton Building, University of Salford, M54WT, UK
| | - Md. FAISAL Md. BASIR
- School of Mathematical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - M. J. UDDIN
- American International University-Bangladesh, Banani, Dhaka 1213, Bangladesh
| | - A. I. Md. ISMAIL
- School of Mathematical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
20
|
Askounis A, Takata Y, Sefiane K, Koutsos V, Shanahan MER. "Biodrop" Evaporation and Ring-Stain Deposits: The Significance of DNA Length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4361-4369. [PMID: 27074133 DOI: 10.1021/acs.langmuir.6b00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Small sessile drops of water containing either long or short strands of DNA ("biodrops") were deposited on silicon substrates and allowed to evaporate. Initially, the triple line (TL) of both types of droplet remained pinned but later receded. The TL recession mode continued at constant speed until almost the end of drop lifetime for the biodrops with short DNA strands, whereas those containing long DNA strands entered a regime of significantly lower TL recession. We propose a tentative explanation of our observations based on free energy barriers to unpinning and increases in the viscosity of the base liquid due to the presence of DNA molecules. In addition, the structure of DNA deposits after evaporation was investigated by AFM. DNA self-assembly in a series of perpendicular and parallel orientations was observed near the contact line for the long-strand DNA, while, with the short-stranded DNA, smoother ring-stains with some nanostructuring but no striations were evident. At the interior of the deposits, dendritic and faceted crystals were formed from short and long strands, respectively, due to diffusion and nucleation limited processes, respectively. We suggest that the above results related to the biodrop drying and nanostructuring are indicative of the importance of DNA length, i.e., longer DNA chains consisting of linearly bonded shorter, rod-like DNA strands.
Collapse
Affiliation(s)
| | | | - Khellil Sefiane
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh , King's Buildings, Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom
| | - Vasileios Koutsos
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh , King's Buildings, Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom
| | - Martin E R Shanahan
- Université Bordeaux, I2M, UMR 5295, F-33400 Talence, France
- CNRS, I2M, UMR 5295, F-33400 Talence, France
- Arts et Métiers ParisTech, I2M, UMR 5295, F-33400 Talence, France
| |
Collapse
|
21
|
Sharma SK, Blanton T, Weston J, Khapli S, Jagannathan R. Sharp blue emission of ZnO crystals by supercritical CO2 processing. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Ahmad I, Jansen HP, Zandvliet HJW, Kooij ES. Hydrodynamic confinement and capillary alignment of gold nanorods. NANOTECHNOLOGY 2016; 27:025301. [PMID: 26630013 DOI: 10.1088/0957-4484/27/2/025301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlling the alignment and orientation of nanorods on various surfaces poses major challenges. In this work, we investigate hydrodynamic confinement and capillary alignment of gold nanorod assembly on chemically stripe-patterned substrates. The surface patterns consist of alternating hydrophilic and hydrophobic micrometer wide stripes; a macroscopic wettability gradient enables controlling the dynamics of deposited suspension droplets. We show that drying of residual liquid on the hydrophilic stripes gives rise to spatially localized deposition and alignment of the nanorods. Moreover, a universal relation between the extent of order within the single layers of nanoparticles and the lateral dimension of the deposits is presented and discussed.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, NL-7500AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
23
|
Noguera-Marín D, Moraila-Martínez CL, Cabrerizo-Vílchez MA, Rodríguez-Valverde MA. Particle Segregation at Contact Lines of Evaporating Colloidal Drops: Influence of the Substrate Wettability and Particle Charge-Mass Ratio. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6632-6638. [PMID: 26000909 DOI: 10.1021/acs.langmuir.5b01062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Segregation of particles during capillary/convective self-assembly is interesting for self-stratification in colloidal deposits. In evaporating drops containing colloidal particles, the wettability properties of substrate and the sedimentation of particles can affect their accumulation at contact lines. In this work we studied the size segregation and discrimination of charged particles with different densities. We performed in-plane particle counting at evaporating triple lines by using fluorescence confocal microscopy. We studied separately substrates with very different wettability properties and particles with different charge-mass ratios at low ionic strength. We used binary colloidal suspensions to compare simultaneously the deposition of two different particles. The particle deposition rate strongly depends on the receding contact angle of the substrate. We further observed a singular behavior of charged polystyrene particles in binary mixtures under "salt-free" conditions explained by the "colloidal Brazil nut" effect.
Collapse
Affiliation(s)
- Diego Noguera-Marín
- Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| | - Carmen L Moraila-Martínez
- Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| | - Miguel A Cabrerizo-Vílchez
- Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| | - Miguel A Rodríguez-Valverde
- Biocolloid and Fluid Physics Group, Applied Physics Department, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| |
Collapse
|