1
|
Hou W, Zou Y, Li J, Jiang H, Li J, Wu J, Zhu S, Ding Y, Xu H, Jia F, Li X. Synergistic Therapy of Melanoma by Co-Delivery of Dacarbazine and Ferroptosis-Inducing Ursolic Acid Using Biomimetic Nanoparticles. ACS OMEGA 2024; 9:41532-41543. [PMID: 39398166 PMCID: PMC11465262 DOI: 10.1021/acsomega.4c05209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Melanoma is one of the most aggressive types of cancer and is prone to metastasis, making current clinical treatment quite difficult. The usage of the first-line medication dacarbazine (DTIC) for melanoma is limited due to harsh side effects, limited water solubility, and a short half-life. To tackle these disadvantages, polylactic acid-hydroxyacetic acid copolymer nanoparticles (NPs) loaded with dacarbazine and ursolic acid (NPs) were fabricated, which were further encapsulated with a red blood cell membrane (RNPs). MTT, apoptosis assay, wound healing assay, colony formation assay, and immunohistochemistry were used to assess the antitumor effect of NPs and RNPs. Ferroptosis evaluation was implemented using GSH detection and the malondialdehyde assay. We found that RNPs exhibited stability and biosafety in vitro and in vivo and achieved superior anticancer ability against xenograft tumors compared with single agents and NPs, which indicated the synergistic and biomimetic efficacy. Furthermore, ferroptotic activity was observed in RNPs-treated tumor cells, and ferroptosis inhibition could partially rescue melanoma cells from RNPs-induced cell death. Collectively, this study evaluated the potential of RNPs as a novel biomimetic nanomedicine for synergistic melanoma therapy by eliciting ferroptosis in tumor cells with both anticancer activity and biosafety.
Collapse
Affiliation(s)
- Wenjun Hou
- Department
of Dermatology, Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing 210008, China
| | - Yifan Zou
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Department
of General Surgery, The First Affiliated
Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jie Li
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Hui Jiang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jinyu Li
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jie Wu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Senlin Zhu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Yan Ding
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Huae Xu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Feng Jia
- Department
of Neurosurgery, Yancheng No. 1 People’s Hospital, The Affiliated Yancheng First Hospital of Nanjing
University Medical School, 66 Renmin South Road, Yancheng 224008, China
| | - Xiaolin Li
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
2
|
Lamch Ł, Szukiewicz R. Entrapment of Amphipathic Drugs in Core-Shell Polymeric Nanoparticles under Batch Conditions─The Role of Control and Solubility Parameters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21186-21198. [PMID: 39316727 PMCID: PMC11465662 DOI: 10.1021/acs.langmuir.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The amphipathic bioactive compounds curcumin, resveratrol, and mitomycin C, which have similar solubility parameter component distributions, have been studied for encapsulation under batch conditions into core-shell nanocarriers composed of external hydrophobically functionalized polyelectrolytes and an inner matrix of polyesters or polyester blends: poly(l-lactide), poly(lactide-co-glycolide), and/or poly(ethylene succinate). Our contribution comprises determining the influence of process parameters on the properties and quality of the final products, namely core-shell nanoparticles loaded with appropriate drugs, according to process analysis technologymanagement. The crucial roles of the organic phase dosing rates and process temperatures were carefully investigated. Moreover, a technically feasible method of removing organic solvents from aqueous dispersions─stripping with inert gas─was employed and evaluated via FT-IR studies. The experiments were supported by the calculation and analysis of solubility parameters (δ) and dispersion (δd), polar (δp), and hydrogen bond (δh) components utilizing HSPiP software. The payload locus and sample morphology were studied via atomic force microscopy and X-ray photoelectron spectroscopy analyses with Ar+ sputtering. It was demonstrated that dosing rates of organic phases not exceeding ca. 0.5 mL/min per 1 L of aqueous dispersion of hydrophobically functionalized polyelectrolytes made it possible to obtain core-shell nanoparticles of ca. 100-150 nm with a very narrow polydispersity (PdI < 0.2). The locus of amphipathic payloads in nanocarriers, mostly within the core polymeric structure, was in good agreement with the results of solubility parameter component studies: water-insoluble polyesters with both polar and nonpolar interactions between chains serve as good host materials for amphipathic drugs.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Rafał Szukiewicz
- Faculty
of Physics, Institute of Experimental Physics, University of Wroclaw, Maxa Borna 9, Wroclaw 50-204, Poland
| |
Collapse
|
3
|
Albogamy NTS, Aboushoushah SF, Aljoud F, Organji H, Elbialy NS. Preparation and characterization of dextran-zein-curcumin nanoconjugate for enhancement of curcumin bioactivity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1891-1910. [PMID: 37000910 DOI: 10.1080/09205063.2023.2198389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Curcumin is one of the most important polyphenolic nutrients in pharmaceutical industries. Unfortunately, its poor solubility and bioavailability have hampered its clinical application. To improve curcumin solubility and bioavailability, a natural nanocarrier made from protein-polysaccharide conjugate has been developed. Following antisolvent precipitation method, zein (Z) nanoparticles coated with dextran sulphate (DS) have been fabricated as curcumin (C) nanocarrier (DSZCNPs). The physicochemical properties of the nanoconjugate were measured using different techniques. Morphologically, DSZCNPs appeared spherical and monodispersed in scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Curcumin encapsulation efficiency was ≈ 96%. DSZCNPs size was 180 nm and the polydispersity index value (PDI) 0.28. Zeta potential for DSZCNPs was -28.5 mV. DSZCNPs showed stability either for shelf storage (100 days) or at different pHs. Furthermore, DSZCNPs protected zein nanoparticles degradation in gastric environment and achieved controlled curcumin release in intestinal environment. DSZCNPs greatly enhanced the antioxidant activity of curcumin as demonstrated by DPPH assay. DSZCNPs had significant results in the reduction of colony forming unit (CFU%) against the tested microbes when compared with free curcumin. Also, the anticancer activity of DSZCNPs and free curcumin against hepatocellular carcinoma cells (HepG2) were assessed by MTT assay. IC50 for DSZCNPs was 13 µg/ml compared to 50 µg/ml for free curcumin indicating the therapeutic impact of DSZCNPs over free curcumin.Based on the above results, the developed zein-dextran nanocomplex exhibited high stability and improved the efficacy and bioactivity of curcumin suggesting its potential utility as nanovehicle for the hydrophobic drug curcumin.
Collapse
Affiliation(s)
- N T S Albogamy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physics Department, University College-Taraba, Taif University, Turbah, Kingdom of Saudi Arabia
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Aljoud
- Regenerative Medicine Unit-KFMRC, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Organji
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nihal S Elbialy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
6
|
Lamch Ł. Membrane-assisted core-shell entrapment technique as a powerful tool for curcumin encapsulation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Ma Y, Li C, Xiu W, Wang X. In vivo and in vitro evaluation of stability and antioxidant activity of lycopene-nanostructured lipid carriers. Food Sci Biotechnol 2022; 32:833-845. [PMID: 37041811 PMCID: PMC10082695 DOI: 10.1007/s10068-022-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
This study evaluates the stability of lycopene in the presence of the prepared nanostructured lipid carriers (NLCs) under different environments and food systems and the in vitro and in vivo antioxidant activity of the lycopene nanostructured lipid carriers (Lyco-NLCs) was studied. As observed in the stability experiment, Lyco-NLCs have good storage stability within 30 days. Food additives have little effect on its stability except for metal ions. Compared with free lycopene, Lyco-NLCs showed an improved antioxidant property. In in-vitro experiments, the DPPH radical scavenging rate, hydroxyl radical scavenging capacity, and ferric reducing capacity of Lyco-NLCs increased by 90.47%, 47.43%, and 45.12%, respectively. The animal experiments showed that the activities of catalase in the kidney, superoxide dismutase in the heart, and glutathione peroxidase in the liver increased by 31.48%, 42.50%, and 21.47%, respectively. The content of malondialdehyde in serum decreased by 14.13%. The results have some significance for the practical application of lycopene.
Collapse
Affiliation(s)
- Yongqiang Ma
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Chenchen Li
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Weiye Xiu
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Xin Wang
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| |
Collapse
|
8
|
Turcsányi Á, Ungor D, Wojnicki M, Csapó E. Protein-stabilized bimetallic Au/Ag nanoclusters as fluorescent reporters: Synthesis, characterization and their interactions with biocolloids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Tong Q, Xu J, Wu A, Zhang C, Yang A, Zhang S, Lin H, Lu W. Pheophorbide A-Mediated Photodynamic Therapy Potentiates Checkpoint Blockade Therapy of Tumor with Low PD-L1 Expression. Pharmaceutics 2022; 14:pharmaceutics14112513. [PMID: 36432703 PMCID: PMC9697200 DOI: 10.3390/pharmaceutics14112513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Although the immune checkpoint blockade (ICB) has made a great success in cancer immunotherapy, the overall response rate to the ICB, such as anti-programmed death ligand 1 (PD-L1) therapy, remains only at 20-30%. One major reason is the low expression level of the immune checkpoint in a certain type of tumor cells and its insufficient activation of the host immune system. Herein, we reported a cyclic RGD (cRGD)-modified liposomal delivery system loading the anti-PD-L1 antibody and the photosensitizer pheophorbide A (Pa), allowing a targeting of the low PD-L1 expressing 4T1 mouse breast cancer cells through the recognition of an overexpression of αvβ3 integrin on the tumor cells. The Pa-mediated photodynamic therapy (PDT) elevated the expression of PD-L1 on the tumor cells. PDT, in combination with the anti-PD-L1 therapy, promoted the activation and maturation of dendritic cells as well as the infiltration of cytotoxic T lymphocytes, resulting in the augmented antitumor immune response for the enhanced therapeutic effect. These results demonstrated the combined therapeutic effects of PDT and ICB on the tumor with low PD-L1 levels. Our study suggested that an increase in the PD-L1 expression in tumor cells by PDT would be a promising adjuvant treatment to overcome the ICB irresponsiveness.
Collapse
|
10
|
Muthwill MS, Kong P, Dinu IA, Necula D, John C, Palivan CG. Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications. Macromol Biosci 2022; 22:e2200270. [PMID: 36100461 DOI: 10.1002/mabi.202200270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| | - Phally Kong
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Christoph John
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| |
Collapse
|
11
|
Customizing polyelectrolytes through hydrophobic grafting. Adv Colloid Interface Sci 2022; 306:102721. [DOI: 10.1016/j.cis.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
|
12
|
Lamch Ł, Wilk KA, Dékány I, Deák Á, Hornok V, Janovák L. Rational Mitomycin Nanocarriers Based on Hydrophobically Functionalized Polyelectrolytes and Poly(lactide- co-glycolide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5404-5417. [PMID: 35442685 PMCID: PMC9097536 DOI: 10.1021/acs.langmuir.1c03360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Encapsulation of hydrophilic and amphiphilic drugs in appropriate colloidal carrier systems for sustained release is an emerging problem. In general, hydrophobic bioactive substances tend to accumulate in water-immiscible polymeric domains, and the release process is controlled by their low aqueous solubility and limited diffusion from the nanocarrier matrix. Conversely, hydrophilic/amphiphilic drugs are typically water-soluble and insoluble in numerous polymers. Therefore, a core-shell approach─nanocarriers comprising an internal core and external shell microenvironments of different properties─can be exploited for hydrophilic/amphiphilic drugs. To produce colloidally stable poly(lactic-co-glycolic) (PLGA) nanoparticles for mitomycin C (MMC) delivery and controlled release, a unique class of amphiphilic polymers─hydrophobically functionalized polyelectrolytes─were utilized as shell-forming materials, comprising both stabilization via electrostatic repulsive forces and anchoring to the core via hydrophobic interactions. Undoubtedly, the use of these polymeric building blocks for the core-shell approach contributes to the enhancement of the payload chemical stability and sustained release profiles. The studied nanoparticles were prepared via nanoprecipitation of the PLGA polymer and were dissolved in acetone as a good solvent and in an aqueous solution containing hydrophobically functionalized poly(4-styrenesulfonic-co-maleic acid) and poly(acrylic acid) of differing hydrophilic-lipophilic balance values. The type of the hydrophobically functionalized polyelectrolyte (HF-PE) was crucial for the chemical stability of the payload─derivatives of poly(acrylic acid) were found to cause very rapid degradation (hydrolysis) of MMC, in contrast to poly(4-styrenesulfonic-co-maleic acid). The present contribution allowed us to gain crucial information about novel colloidal nanocarrier systems for MMC delivery, especially in the fields of optimal HF-PE concentrations, appropriate core and shell building materials, and the colloidal and chemical stability of the system.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Kazimiera A. Wilk
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Imre Dékány
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Ágota Deák
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Viktória Hornok
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - László Janovák
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
13
|
Multilayered Curcumin-Loaded Hydrogel Microcarriers with Antimicrobial Function. Molecules 2022; 27:molecules27041415. [PMID: 35209213 PMCID: PMC8875356 DOI: 10.3390/molecules27041415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
The design of multifunctional microcarriers has attracted significant attention because they combine various functions within a single system. In this study, we developed a set of multilayered hydrogel microcarriers, which were first loaded with chemotherapeutic curcumin (CUR), then, using the layer-by-layer (LbL) technique, coated through a polyelectrolyte shell consisting of chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). As an outer layer with antimicrobial function, newly synthesised alkylene quaternary ammonium salt functionalised polyelectrolytes (A-QAS-PEs) were applied. For this purpose, poly(acrylic acid) (PAA) was decorated with different hydrophobic side chains (n-hexane and n-dodecane side entities) and different degrees of substitution (m) of quaternary ammonium groups (abbreviated as PAA-C(O)O-(CH2)n-N+(CH3)3(m); n = 6, 12; m = 8–14%). The grafting approach of PAA with the alkylene quaternary ammonium salt moiety was performed under mild reaction conditions using Steglich esterification followed by quaternisation. The structure of antimicrobial decorated PAA was confirmed by 1H NMR and FTIR, and the mean diameter of all multifunctional microparticles was characterised by SEM. The viscoelastic properties of the functional layers were studied using quartz crystal microbalance with a dissipation (QCM-D). The release of CUR from the microcarriers was described using a hybrid model, i.e., a combination of first-order kinetics and the Korsmeyer-Peppas model. The antimicrobial activity of functionalised PAA and multilayered CUR-loaded hydrogel microcarriers with quaternary ammonium function was assessed against Staphylococcus aureus and Serratia marcescens by the agar diffusion assay method. Only a limited inhibition zone of PAA was observed, but in the case of both antimicrobial decorated PAA and the corresponding multilayered nanocarriers, the inhibitory activity increase was achieved against both strains of bacteria.
Collapse
|
14
|
Kulbacka J, Wilk KA, Bazylińska U, Dubińska-Magiera M, Potoczek S, Saczko J. Curcumin Loaded Nanocarriers with Varying Charges Augmented with Electroporation Designed for Colon Cancer Therapy. Int J Mol Sci 2022; 23:ijms23031377. [PMID: 35163301 PMCID: PMC8836164 DOI: 10.3390/ijms23031377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: The size and surface charge are the most significant parameters of nanocarriers that determine their efficiency and potential application. The poor cell uptake of encapsulated drugs is the main limitation in anticancer treatment. The well-defined properties of nanocarriers will enable to target specific tissue and deliver an active cargo. (2) Methods: In the current study, poly(D,L -lactide) (PLA) nanocarriers loaded with curcumin (CUR) and differing surface charge were evaluated for transport efficacy in combination with electroporation (EP) in dependence on the type of cells. The obtained CUR-loaded nanoparticles with diameters ranging from 195 to 334 nm (derived from dynamic light scattering (DLS)) were characterized by atomic force microscopy (AFM) (morphology and shape) and Doppler electrophoresis (ζ-potential) as well as UV-vis spectroscopy (CUR encapsulation efficiency (about 90%) and photobleaching rate). The drug delivery properties of the obtained PLA nanocarriers enhanced by electroporation were assessed in human colon cancer cells (LoVo), excitable normal rat muscle cells (L6), and free of voltage-gated ion channels cells (CHO-K1). CLSM studies, viability, and ROS release were performed to determine the biological effects of nanocarriers. (3) Results: The highest photodynamic activity indicated anionic nanocarriers (1a) stabilized by C12(COONa)2 surfactant. Nanocarriers were cytotoxic for LoVo cells and less cytotoxic for normal cells. ROS release increased in cancer cells with the increasing electric field intensity, irradiation, and time after EP. Muscle L6 cells were less sensitive to electric pulses. (4) Conclusions: EP stimulation for CUR-PLA nanocarriers transport was considered to improve the regulated and more effective delivery of nanosystems differing in surface charge.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-06-92
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | - Urszula Bazylińska
- Department of Physical and Theoretical Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Science, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Stanisław Potoczek
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wybrzeże Pasteura 4, 50-367 Wrocław, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland;
| |
Collapse
|
15
|
Chowdhury S, Rakshit A, Acharjee A, Kumar D, Saha B. Anionic micelles and their ideal binary mixture: Worth media for sustainable oxidation of hydrophobic alcohol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Jia S, Yuan H, Hu R. Design and Structural Regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Biomater Sci 2022; 10:4443-4457. [DOI: 10.1039/d2bm00864e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, photodynamic therapy (PDT) has become one of the important therapeutic methods for treating cancer. Aggregation-induced emission (AIE) photosensitizers (PSs) overcome the aggregation-caused quenching (ACQ) effects of conventional...
Collapse
|
17
|
Falsafi SR, Rostamabadi H, Babazadeh A, Tarhan Ö, Rashidinejad A, Boostani S, Khoshnoudi-Nia S, Akbari-Alavijeh S, Shaddel R, Jafari SM. Lycopene nanodelivery systems; recent advances. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Nieves LM, Mossburg K, Hsu JC, Maidment ADA, Cormode DP. Silver chalcogenide nanoparticles: a review of their biomedical applications. NANOSCALE 2021; 13:19306-19323. [PMID: 34783806 PMCID: PMC8647685 DOI: 10.1039/d0nr03872e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Silver chalcogenide (Ag2X, where X = S, Se, or Te) nanoparticles have been extensively investigated for their applications in electronics but have only recently been explored for biomedical applications. In the past 10 years, Ag2X, primarily silver sulfides at first, have become of great importance as quantum dots, since they not only possess excellent deep tissue imaging properties in the near-infrared regions I and II, but also have low toxicities. Their appealing properties have led to numerous recent developments of Ag2X for biomedical applications. Furthermore, Ag2X have been discovered in the past 2-3 years to be potent X-ray contrast agents, adding to the numerous biomedical uses of these nanoparticles. In this review, we discuss the most recent advances in silver chalcogenide nanoparticle use in areas such as bio-imaging, theranostics, and biosensors. Moreover, we examine the advances in synthetic approaches for these nanoparticles, which include aqueous and organic syntheses routes. Finally, we discuss the advantages and current limitations in the use of silver chalcogenides for different biomedical applications and their potential for advancement and expansions in use.
Collapse
Affiliation(s)
- Lenitza M Nieves
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Radiology Department, University of Pennsylvania, Philadelphia, PA, USA.
| | - Katherine Mossburg
- Radiology Department, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica C Hsu
- Radiology Department, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David P Cormode
- Radiology Department, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Szczęsna W, Tsirigotis-Maniecka M, Szyk-Warszyńska L, Balicki S, Warszyński P, Wilk KA. Insight into multilayered alginate/chitosan microparticles for oral administration of large cranberry fruit extract. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Ao H, Li HW, Lu LK, Fu JX, Han MH, Guo YF, Wang XT. Sensitive Tumor Cell Line for Annonaceous Acetogenins and High Therapeutic Efficacy at a Low Dose for Choriocarcinoma Therapy. J Biomed Nanotechnol 2021; 17:2062-2070. [PMID: 34706806 DOI: 10.1166/jbn.2021.3175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Annonaceous acetogenins (ACGs) have attracted much attention because of excellent antitumor activity. However, the lack of selectivity and the accompanying serious toxicity have eventually prevented ACGs from entering clinical application. To decrease the side effects of ACGs, the cytotoxicity of ACGs on 10 types of tumor cell lines was investigated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) test to identify one that was very sensitive to ACGs. Meanwhile, ACGs nanoparticles (ACGs-NPs) were prepared using poloxamer 188 (P188) as an excipient so as to solve the problem of poor solubility and the in vivo delivery of ACGs. ACG-NPs were 163.9±2.5 nm in diameter, negatively charged, and spherical with a high drug loading content (DLC) of 44.9±1.2%. MTS assays demonstrated that ACGs had strong cytotoxicity against JEG-3, HeLa, SiHa, MCF-7, A375, A2058, A875, U-118MG, LN- 229, and A431 cells, among which JEG-3 cell line was extremely sensitive to ACGs with a 50% inhibitory concentration (IC50) value of 0.26 ng/mL, a very encouraging discovery. ACGs-NPs demonstrated very good dose-dependent antitumor efficacy in a broad range of 45?1200 μg/kg on JEG-3 tumor-bearing mice. At a very low dose (1200 μg/kg), ACGs-NPs achieved a high tumor inhibition rate (TIR) of 77.6% through oral administration, displaying a significant advantage over paclitaxel (PTX) injections that are currently used as first-line anti-choriocarcinoma drugs. In the acute toxicity study, the half lethal dose (LD50) of ACGs-NPs was 135.5 mg/kg, which was over 100 times as of the effective antitumor dose, indicating good safety of ACGs-NPs. ACGs-NPs show promise as a new type of and potent anti-choriocarcinoma drug in the future.
Collapse
Affiliation(s)
- Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Hao-Wen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Li-Kang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Jing-Xin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Mei-Hua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Yi-Fei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| | - Xiang-Tao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, PR China
| |
Collapse
|
22
|
Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int J Mol Sci 2021; 22:ijms221910337. [PMID: 34638678 PMCID: PMC8508910 DOI: 10.3390/ijms221910337] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
The success of modern dental treatment is strongly dependent on the materials used both temporarily and permanently. Among all dental materials, polymers are a very important class with a wide spectrum of applications. This review aims to provide a state-of-the-art overview of the recent advances in the field of natural polymers used to maintain or restore oral health. It focuses on the properties of the most common proteins and polysaccharides of natural origin in terms of meeting the specific biological requirements in the increasingly demanding field of modern dentistry. The use of naturally derived polymers in different dental specialties for preventive and therapeutic purposes has been discussed. The major fields of application cover caries and the management of periodontal diseases, the fabrication of membranes and scaffolds for the regeneration of dental structures, the manufacturing of oral appliances and dentures as well as providing systems for oral drug delivery. This paper also includes a comparative characteristic of natural and synthetic dental polymers. Finally, the current review highlights new perspectives, possible future advancements, as well as challenges that may be encountered by researchers in the field of dental applications of polymers of natural origin.
Collapse
|
23
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review is written to endow updated information on polypyrrole based photosensitizers for the treatment of deadly diseases such as cancer and microbial infection. Tetrapyrrolic macromolecules such as porphyrins and phthalocyanines hold unique photophysical properties which make them very useful compounds for various biomedical applications. Besides their properties, they also have some limitations such as low water solubility, bioavailability, biocompatibility and lack of specificity, etc. Researchers are trying to overcome these limitations by incorporating photosensitizers into the different types of nanoparticles and improve the quality of photodynamic therapy. We have contributed to this field by synthesizing and developing polypyrrolic photosensitizer based nanoparticles for potential applications in antimicrobial and anticancer photodynamic activity. Throughout this review, newly synthesized and existing PSs conjugated/encapsulated/doped/incorporated with nanoparticles are emphasized, which are essential for current and future research themes. Also in this review, we briefly summarized the research work carried over the past few years by considering the porphyrin based photosensitizers as alternative therapeutic entities for the treatment of microbial infections, cancers, and many other diseases.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector-81, S.A.S. Nagar-140306, Mohali, Punjab, India
| | - Uttam Chand Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
| |
Collapse
|
25
|
Flont M, Jastrzębska E, Brzózka Z. A multilayered cancer-on-a-chip model to analyze the effectiveness of new-generation photosensitizers. Analyst 2021; 145:6937-6947. [PMID: 32851999 DOI: 10.1039/d0an00911c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cellular models of cancer tissue are necessary tools to analyze new anticancer drugs under in vitro conditions. Diagnostics and treatment of ovarian cancer are major challenges for current medicine. In our report we propose a new three-dimensional (3D) cellular model of ovarian cancer which can mimic a fragment of heterogeneous cancer tissue. We used Lab-on-a-chip technology to create a microfluidic system that allows cellular multilayer to be cultured. Cellular multilayer mimics the structure of two important elements of cancer tissue: flesh and stroma. For this reason, it has an advantage over other in vitro cellular models. We used human ovarian fibroblasts (HOF) and human ovarian cancer cells in our research (A2780). In the first stage of the study, we proved that the presence of non-malignant fibroblasts in co-culture with ovarian cancer cells stimulates the proliferation of cancer cells, which is important in the progression of ovarian cancer. In the next stage of the research, we tested the usefulness of the newly-developed cellular model in the analysis of anticancer drugs and therapies under in vitro conditions. We tested two photosensitizers (PS): free and nanoencapsulated meso-tetrafenylporphyrin, and we evaluated the potential of these drugs in anticancer photodynamic therapy (PDT) of ovarian cancer. We also studied the mechanism of PDT based on the analysis of the level of reactive oxygen species (ROS) in cell cultures. Our research confirmed that the use of new-generation PS can significantly increase the efficacy of PDT in the treatment of ovarian cancer. We also proved that the newly-developed 3D cellular model is suitable for rapid screening of anticancer drugs and has the potential to be used clinically in the future, e.g. in the selection of treatment methods for anticancer personalized medicine.
Collapse
Affiliation(s)
- Magdalena Flont
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | | | | |
Collapse
|
26
|
Lamch Ł, Gancarz R, Tsirigotis-Maniecka M, Moszyńska IM, Ciejka J, Wilk KA. Studying the "Rigid-Flexible" Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe Using NMR and UV Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4316-4330. [PMID: 33794644 PMCID: PMC8154882 DOI: 10.1021/acs.langmuir.1c00328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of the performed studies was to thoroughly examine the internal structure of self-assembled nanocarriers (i.e., polymeric micelles-PMs) by means of a hydrophobic phthalocyanine probe in order to identify the crucial features that are required to enhance the photoactive probe stability and reactivity. PMs of hydrophilic poly(ethylene glycol) and hydrophobic poly(ε-caprolactone) (PCL) or poly(d,l-lactide) (PDLLA) were fabricated and loaded with tetra tert-butyl zinc(II) phthalocyanine (ZnPc-t-but4), a multifunctional spectroscopic probe with a profound ability to generate singlet oxygen upon irradiation. The presence of subdomains, comprising "rigid" and "flexible" regions, in the studied block copolymers' micelles as well as their interactions with the probe molecules, were assessed by various high-resolution NMR measurements [e.g., through-space magnetic interactions by the 1D NOE effect, pulsed field gradient spin-echo, and spin-lattice relaxation time (T1) techniques]. The studies of the impact of the core-type microenvironment on the ZnPc-t-but4 photochemical performance also included photobleaching and reactive oxygen species measurements. ZnPc-t-but4 molecules were found to exhibit spatial proximity effects with both (PCL and PDLLA) hydrophobic polymer chains and interact with both subdomains, which are characterized by different rigidities. It was deduced that the interfaces between particular subdomains constitute an optimal host space for probe molecules, especially in the context of photochemical stability, photoactivity (i.e., for significant enhancement of singlet oxygen generation rates), and aggregation prevention. The present contribution proves that the combination of an appropriate probe, high-resolution NMR techniques, and UV-vis spectroscopy enables one to gain complex information about the subtle structure of PMs essential for their application as nanocarriers for photoactive compounds, for example, in photodynamic therapy, nanotheranostics, combination therapy, or photocatalysis, where the micelles constitute the optimal microenvironment for the desired photoreactions.
Collapse
|
27
|
Zhdanova KA, Savelyeva IO, Ezhov AV, Zhdanov AP, Zhizhin KY, Mironov AF, Bragina NA, Babayants AA, Frolova IS, Filippova NI, Scliankina NN, Scheglovitova ON. Novel Cationic Meso-Arylporphyrins and Their Antiviral Activity against HSV-1. Pharmaceuticals (Basel) 2021; 14:ph14030242. [PMID: 33800457 PMCID: PMC7999199 DOI: 10.3390/ph14030242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
This work is devoted to the search for new antiherpes simplex virus type 1 (HSV-1) drugs among synthetic tetrapyrroles and to an investigation of their antiviral properties under nonphotodynamic conditions. In this study, novel amphiphilic 5,10,15,20-tetrakis(4-(3-pyridyl-n-propanoyl)oxyphenyl)porphyrin tetrabromide (3a), 5,10,15,20-tetrakis(4-(6-pyridyl-n-hexanoyl)oxyphenyl)porphyrin tetrabromide (3b) and known 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetraiodide (TMePyP) were synthesized, and their dark antiviral activity in vitro against HSV-1 was studied. The influence of porphyrin’s nanosized delivery vehicles based on Pluronic F127 on anti-HSV-1 activity was estimated. All the received compounds 3a, 3b and TMePyP showed virucidal efficiency and had an effect on viral replication stages. The new compound 3b showed the highest antiviral activity, close to 100%, with the lowest concentration, while the maximum TMePyP activity was observed with a high concentration; porphyrin 3a was the least active. The inclusion of the synthesized compounds in Pluronic F-127 polymeric micelles had a noticeable effect on antiviral activity only at higher porphyrin concentrations. Action of the received compounds differs by influence on the early or later reproduction stages. While 3a and TMePyP acted on all stages of the viral replication cycle, porphyrin 3b inhibited viral replication during the early stages of infection. The resulting compounds are promising for the development of utilitarian antiviral agents and, possibly, medical antiviral drugs.
Collapse
Affiliation(s)
- Kseniya A. Zhdanova
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
- Correspondence: ; Tel.: +79-261-126-692
| | - Inga O. Savelyeva
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
| | - Artem V. Ezhov
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
| | - Andrey P. Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Pr. 31, Moscow 117907, Russia;
| | - Konstantin Yu. Zhizhin
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii Pr. 31, Moscow 117907, Russia;
| | - Andrey F. Mironov
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
| | - Natal’ya A. Bragina
- MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (A.V.E.); (K.Y.Z.); (A.F.M.); (N.A.B.)
| | - Alla A. Babayants
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| | - Irina S. Frolova
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| | - Nadezhda I. Filippova
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| | - Nadezhda N. Scliankina
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| | - Olga N. Scheglovitova
- Gamaleya Research Center of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia; (A.A.B.); (I.S.F.); (N.I.F.); (N.N.S.); (O.N.S.)
| |
Collapse
|
28
|
Adsorption Properties of Soft Hydrophobically Functionalized PSS/MA Polyelectrolytes. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the adsorption properties of the newly synthesized, hydrophobically functionalized polyelectrolyte (HF-PE), poly(4-styrenesulfonic-co-maleic acid) copolymer (PSS/MA). The hydrophobic alkyl side chains (C12 or C16) were incorporated into the polyelectrolyte backbone via the labile amid linker to obtain the soft HF-PE product with the assumed amount of 15% and 40% degree of grafting for every length of the alkyl chain, i.e., PSS/MA-g-C12NH2 (15% or 40%) as well as PSS/MA-g-C16NH2 (15% or 40%). In the present contribution, we determined both the effect of grafting density and the length of alkyl chain on adsorption at water/air and water/decane interfaces, as well as on top of the polyelectrolyte multilayer (PEM) deposited on a solid surface. The dependence of the interfacial tension on copolymer concentration was investigated by the pendant drop method, while the adsorption at solid surface coated by poly(diallyldimethylammonium chloride)/poly(styrene sulphonate) PEM by the quartz crystal microbalance with dissipation (QCM-D), attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR) and contact angle analysis. We found that surface activity of the hydrophobized copolymer was practically independent of the grafting ratio for C16 side chains, whereas, for C12, the copolymer with a lower grafting ratio seemed to be more surface active. The results of QCM-D and FTIR-ATR experiments confirmed the adsorption of hydrophobized copolymer at PEM along with the modification of water structure at the interface. Finally, it can be concluded that the hydrophobically modified PSS/MA can be successfully applied either as the efficacious emulsifier for the formation of (nano)emulsions for further active substances encapsulation using the sequential adsorption method or as one of the convenient building blocks for the surface modification materials.
Collapse
|
29
|
Tabero A, Planas O, Gallavardin T, Nieves I, Nonell S, Villanueva A. Smart Dual-Functionalized Gold Nanoclusters for Spatio-Temporally Controlled Delivery of Combined Chemo- and Photodynamic Therapy. NANOMATERIALS 2020; 10:nano10122474. [PMID: 33321776 PMCID: PMC7763296 DOI: 10.3390/nano10122474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023]
Abstract
We report the preparation of gold nanoclusters (AuNCs) as a delivery vehicle for the clinically approved photodynamic and chemotherapeutic agents Protoporphyrin IX (PpIX) and doxorubicin (DOX), respectively, and their effect on tumor cells. DOX was attached to the gold nanoclusters through a singlet oxygen-cleavable linker and was therefore released after PpIX irradiation with red light, contributing, synergistically with singlet oxygen, to induce cell death. The doubly functionalized AuNCs proved more effective than a combination of individually functionalized AuNCs. Unlike free DOX, the photoactive nanosystem was non-toxic in the absence of light, which paves the way to introduce a spatiotemporal control of the anticancer therapy and could contribute to reducing the undesirable side effects of DOX.
Collapse
Affiliation(s)
- Andrea Tabero
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Oriol Planas
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | | | - Ingrid Nieves
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Instituto Madrileño Estudios Avanzados IMDEA Nanociencia, C Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
30
|
Tokarska K, Lamch Ł, Piechota B, Żukowski K, Chudy M, Wilk KA, Brzózka Z. Co-delivery of IR-768 and daunorubicin using mPEG-b-PLGA micelles for synergistic enhancement of combination therapy of melanoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:111981. [PMID: 32862088 DOI: 10.1016/j.jphotobiol.2020.111981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Malignant melanoma is an emerging problem worldwide due to the high degree of lethalness. Its aggressiveness and the ability to metastasize along with the heterogeneity at the molecular and cellular levels, limit the overall therapeutic efficacy. Despite significant advances in melanoma treatment over the last decade, there is still a need for improved therapeutic modalities. Thus, we demonstrate here a combinatorial approach that targets multiple independent therapeutic pathways, in which polymeric micelles (PMs) were used as efficacious colloidal nanocarriers loaded with both daunorubicin (DRB) as a cytotoxic drug and IR-768 as a photosensitizer. This afforded the dual drug loaded delivery system IR-768 + DRB in PMs. The fabricated mPEG-b-PLGA micelles (hydrodynamic diameters ≈ 25 nm) had a relatively narrow size distribution (PdI > ca. 0.3) with uniform spherical shapes. CLSM study showed that mPEG-b-PLGA micelles were uptaken by mitochondria, which further contributed to excellent singlet oxygen generation capacity for PDT in A375 melanoma cells. Furthermore, the PMs were efficiently internalized by tested cells through endocytosis, resulting in much higher cellular uptake comparing to the free drug. As a result of these properties, IR-768 + DRB in PMs exhibited very potent and synergistically enhanced anticancer activity against A375 cells. Additionally, this combination approach allowed to reduce drug doses and provided low side effects towards normal HaCaT. This study indicates excellent properties of mPEG-b-PLGA micelles resulting in great therapeutic potential possessed by the developed nanoscale drug delivery system for combined chemo-photodynamic therapy of melanoma.
Collapse
Affiliation(s)
- Katarzyna Tokarska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND; Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, POLAND
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, POLAND
| | - Beata Piechota
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND
| | - Kamil Żukowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, POLAND
| | - Michał Chudy
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, POLAND.
| | - Zbigniew Brzózka
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, POLAND.
| |
Collapse
|
31
|
Liao C, Jin Y, Li Y, Tjong SC. Interactions of Zinc Oxide Nanostructures with Mammalian Cells: Cytotoxicity and Photocatalytic Toxicity. Int J Mol Sci 2020; 21:E6305. [PMID: 32878253 PMCID: PMC7504403 DOI: 10.3390/ijms21176305] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
This article presents a state-of-the-art review and analysis of literature studies on the morphological structure, fabrication, cytotoxicity, and photocatalytic toxicity of zinc oxide nanostructures (nZnO) of mammalian cells. nZnO with different morphologies, e.g., quantum dots, nanoparticles, nanorods, and nanotetrapods are toxic to a wide variety of mammalian cell lines due to in vitro cell-material interactions. Several mechanisms responsible for in vitro cytotoxicity have been proposed. These include the penetration of nZnO into the cytoplasm, generating reactive oxygen species (ROS) that degrade mitochondrial function, induce endoplasmic reticulum stress, and damage deoxyribonucleic acid (DNA), lipid, and protein molecules. Otherwise, nZnO dissolve extracellularly into zinc ions and the subsequent diffusion of ions into the cytoplasm can create ROS. Furthermore, internalization of nZnO and localization in acidic lysosomes result in their dissolution into zinc ions, producing ROS too in cytoplasm. These ROS-mediated responses induce caspase-dependent apoptosis via the activation of B-cell lymphoma 2 (Bcl2), Bcl2-associated X protein (Bax), CCAAT/enhancer-binding protein homologous protein (chop), and phosphoprotein p53 gene expressions. In vivo studies on a mouse model reveal the adverse impacts of nZnO on internal organs through different administration routes. The administration of ZnO nanoparticles into mice via intraperitoneal instillation and intravenous injection facilitates their accumulation in target organs, such as the liver, spleen, and lung. ZnO is a semiconductor with a large bandgap showing photocatalytic behavior under ultraviolet (UV) light irradiation. As such, photogenerated electron-hole pairs react with adsorbed oxygen and water molecules to produce ROS. So, the ROS-mediated selective killing for human tumor cells is beneficial for cancer treatment in photodynamic therapy. The photoinduced effects of noble metal doped nZnO for creating ROS under UV and visible light for killing cancer cells are also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (C.L.); (Y.J.)
| | - Yuming Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (C.L.); (Y.J.)
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
32
|
Balicki S, Pawlaczyk-Graja I, Gancarz R, Capek P, Wilk KA. Optimization of Ultrasound-Assisted Extraction of Functional Food Fiber from Canadian Horseweed ( Erigeron canadensis L.). ACS OMEGA 2020; 5:20854-20862. [PMID: 32875220 PMCID: PMC7450493 DOI: 10.1021/acsomega.0c02181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Much attention has been recently paid to the design of sustainable processes for the production of functional food additives based on renewable resources. Thus, methods for incorporation of green techniques in treatment of undeveloped biomass, resulting in value-added bioproducts, are in great demand. We focus here on the biological activity and chemical properties of Erigeron canadensis (horseweed) functional food fiber, which can be strongly affected by the extraction procedure employed. In the present contribution, we report on an attempt to introduce a sustainable and energy-efficient ultrasound-assisted extraction process, followed by a multistep purification procedure, resulting in a macromolecular plant-derived anticoagulant agent. The most efficient ultrasound-assisted process was determined by optimization through the response surface methodology I-optimal design (24). A comparison with the conventional procedure for retrieval of horseweed biomacromolecules revealed that the optimized ultrasound-assisted extraction was more sustainable, with the cumulative energy demand being 38% lower (12.2 MJ), 6.6 times reduced water consumption (3.5 L), and 1.2 times shorter (41 h) total processing time. Moreover, the optimal ultrasound-assisted extraction process-purified food fiber turned out to be a better anticoagulant agent by 57%, compared to a conventional product, and was a more selective indirect inhibitor of the human Xa coagulation factor.
Collapse
Affiliation(s)
- Sebastian Balicki
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Izabela Pawlaczyk-Graja
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Roman Gancarz
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Peter Capek
- Institute
of Chemistry, Center for Glycomics, Slovak
Academy of Sciences, Dubravská cesta 9, 845 38 Bratislava, Slovakia
| | - Kazimiera A. Wilk
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
33
|
Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Engineering a pH/Glutathione-Responsive Tea Polyphenol Nanodevice as an Apoptosis/Ferroptosis-Inducing Agent. ACS APPLIED BIO MATERIALS 2020; 3:4128-4138. [PMID: 35025415 DOI: 10.1021/acsabm.0c00225] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Javed B, Raja NI, Nadhman A, Mashwani ZUR. Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens. APPLIED NANOSCIENCE 2020; 10:2057-2067. [DOI: 10.1007/s13204-020-01355-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/11/2020] [Indexed: 01/08/2023]
|
36
|
Lamch Ł, Ronka S, Warszyński P, Wilk KA. NMR studies of self-organization behavior of hydrophobically functionalized poly(4-styrenosulfonic-co-maleic acid) in aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Hydrophobically Functionalized Poly(Acrylic Acid) Comprising the Ester-Type Labile Spacer: Synthesis and Self-Organization in Water. Polymers (Basel) 2020; 12:polym12051185. [PMID: 32455970 PMCID: PMC7285226 DOI: 10.3390/polym12051185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most important properties of hydrophobically functionalized polyelectrolytes (HF-PEs) and their assemblies is their ability to encapsulate hydrophobic/amphiphilic agents and provide release on demand of the entrapped payload. The aim of the present work was to synthesize and study self-organization behavior in aqueous solution of hydrophobically functionalized poly(acrylic acid) (PAA) comprising the ester-type pH labile moiety with various degrees of hydrophobization and side-chain lengths in the absence and presence of appropriate mono- and polyvalent electrolytes (i.e., NaCl or CaCl2). The synthesis and purification of hydrophobically functionalized PAA were performed under mild conditions in order to avoid chemical degradation of the polymers. The modified polyelectrolytes self-assembly in aqueous systems was monitored using diffusion-ordered nuclear magnetic resonance (DOSY NMR). The performed studies, supported by the all-atoms molecular dynamics simulations, revealed a strong dependence of polyelectrolyte self-assembled state on concentration—specific concentration regions with the coexistence of both smaller and larger aggregates were observed (values of hydrodynamic diameter DH around one nanometer and between two to six nanometers, respectively). Our investigations enabled us to gain crucial information about the self-assembly of the hydrophobically functionalized poly(acrylic acid) and opened the possibility of understanding and predicting its performance under various conditions.
Collapse
|
38
|
Odda AH, Li H, Kumar N, Ullah N, Khan MI, Wang G, Liang K, Liu T, Pan YY, Xu AW. Polydopamine Coated PB-MnO 2 Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy. Bioconjug Chem 2020; 31:1474-1485. [DOI: doi.org/10.1021/acs.bioconjchem.0c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Affiliation(s)
- Atheer Hameid Odda
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
- Department of Biochemistry, College of Medicine, Kerbala University, Kerbala 56001, Iraq
| | - Hailiang Li
- Department II of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Naveen Kumar
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People’s Hospital, Kangning Road, Zhuhai 519000, Guangdong, China
| | - Naseeb Ullah
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Malik Ihsanullah Khan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Gang Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kuang Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tan Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue-Yin Pan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
39
|
Javed B, Nadhman A, Razzaq A, Mashwani ZUR. One-pot phytosynthesis of nano-silver from Mentha longifolia L.: their characterization and evaluation of photodynamic potential. MATERIALS RESEARCH EXPRESS 2020; 7:055401. [DOI: 10.1088/2053-1591/ab903b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Abstract
The present study deals with the ecofriendly one-pot synthesis and stabilization of silver nanoparticles (AgNPs) by using aqueous extract of Mentha longifolia branches. Spectrophotometric analysis of different ratios of reactants revealed that a 1 to 9 ratio of plant extract and silver salt solution respectively is the most suitable proportion for synthesis. Synthesis of AgNPs was confirmed initially by the observation of change in the color of the reaction mixture which was carried out at 60 °C by using 3 mM of silver salt and the pH of the reaction medium was maintained at 5.22. A characteristic surface plasmon resonance (SPR) band was observed at 495 nm of light wavelength. SEM images revealed that the nanoparticles are in ∼20–80 nm and are anisotropic and nearly spherical while EDX analysis showed the presence of elemental Ag with ∼90% signal intensity. Size distribution analysis of AgNPs was performed by dynamic light scattering technique and AgNPs were found in the range of ∼8–30 nm. ROS quantification revealed that the AgNPs have a quantum yield of 0.09 Φ which provides them the ability to proteolytically treat cancer and other microbial pathogenic cells. AgNPs did not report any photothermal activity to be used as photodynamic agents. These findings explain the redox potential of M. longifolia to bio-fabricate AgNPs and their abilities to generate ROS may help to curb dreading diseases.
Collapse
|
40
|
Odda AH, Li H, Kumar N, Ullah N, Khan MI, Wang G, Liang K, Liu T, Pan YY, Xu AW. Polydopamine Coated PB-MnO 2 Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy. Bioconjug Chem 2020; 31:1474-1485. [PMID: 32286806 DOI: 10.1021/acs.bioconjchem.0c00165] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exploring a combined phototherapeutic strategy to overcome the limitations of a single mode therapy and inducing high anticancer efficiency is highly promising for precision cancer nanomedicine. However, a single-wavelength laser activates dual photothermal/photodynamic therapy (PTT/PDT) treatment is still a formidable challenge. Herein, we strategically design and fabricate a multifunctional theranostic nanosystem based on chlorin e6-functionalized polydopamine (PDA) coated prussian blue/manganese dioxide nanoparticles (PB-MnO2@PDA-Ce6 NPs). Interestingly, the obtained PB-MnO2@PDA NPs not only offer an effective delivery system for Ce6 but also provide strong optical absorption in the near-infrared range, endowing high antitumor efficacy of PTT. More importantly, the as-prepared PB-MnO2@PDA-Ce6 nanoagents exhibit an effective oxygen generation, superior reactive oxygen species (ROS), and outstanding photothermal conversion ability to greatly improve PTT and PDT treatments. As a result, both in vitro and in vivo treatments guided by MR imaging on liver cancer cells reveal the complete cell/tumor eradication under a single wavelength of 660 nm laser irradiation, implying the simultaneous synergistic PDT/PTT effects triggered by PB-MnO2@PDA-Ce6 nanoplatform, which are much higher than individual treatment. Taken together, our phototherapeutic nanoagents exhibit an excellent therapeutic performance, which may act as a nanoplatform to find safe and clinically translatable routes to accelerate cancer therapeutics.
Collapse
Affiliation(s)
- Atheer Hameid Odda
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China.,Department of Biochemistry, College of Medicine, Kerbala University, Kerbala 56001, Iraq
| | - Hailiang Li
- Department II of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Naveen Kumar
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Kangning Road, Zhuhai 519000, Guangdong, China
| | - Naseeb Ullah
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Malik Ihsanullah Khan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Gang Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kuang Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tan Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue-Yin Pan
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at The Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
41
|
Pandey S, Bodas D. High-quality quantum dots for multiplexed bioimaging: A critical review. Adv Colloid Interface Sci 2020; 278:102137. [PMID: 32171116 DOI: 10.1016/j.cis.2020.102137] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/18/2022]
Abstract
Bioimaging done using two or more fluorophores possessing different emission wavelengths can be termed as a multicolor/multiplexed bioimaging technique. Traditionally, images are captured sequentially using multiple fluorophores having specific excitation and emission. For this purpose, multifunctional nanoprobes, such as organic fluorophores, metallic nanoparticles, semiconductor quantum dots, and carbon dots (CDs) are used. Among these fluorophores, quantum dots (QDs) have emerged as an ideal probe for multiplexed bioimaging due to their unique property of size tunable emission. However, the usage of quantum dots in bioimaging is limited due to their toxicity. Furthermore, the reproducibility of optical properties is cynical. These desirable properties, along with enhancement in quantum efficiency, photostability, fluorescence lifetime, etc. can be achieved by stringent control over synthesis parameters. This review summarizes the desirable properties and synthesis methods of such superior QDs followed by their application in multiplexed imaging.
Collapse
Affiliation(s)
- Sulaxna Pandey
- Nanobioscience group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Dhananjay Bodas
- Nanobioscience group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India; Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, India.
| |
Collapse
|
42
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
In last two decades, the lipid nanocarriers have been extensively investigated for their drug targeting efficiency towards the critical areas of the human body like CNS, cardiac region, tumor cells, etc. Owing to the flexibility and biocompatibility, the lipid-based nanocarriers, including nanoemulsion, liposomes, SLN, NLC etc. have gained much attention among various other nanocarrier systems for brain targeting of bioactives. Across different lipid nanocarriers, NLC remains to be the safest, stable, biocompatible and cost-effective drug carrier system with high encapsulation efficiency. Drug delivery to the brain always remains a challenging issue for scientists due to the complex structure and various barrier mechanisms surrounding the brain. The application of a suitable nanocarrier system and the use of any alternative route of drug administration like nose-to-brain drug delivery could overcome the hurdle and improves the therapeutic efficiency of CNS acting drugs thereof. NLC, a second-generation lipid nanocarrier, upsurges the drug permeation across the BBB due to its unique structural properties. The biocompatible lipid matrix and nano-size make it an ideal drug carrier for brain targeting. It offers many advantages over other drug carrier systems, including ease of manufacturing and scale-up to industrial level, higher drug targeting, high drug loading, control drug release, compatibility with a wide range of drug substances, non-toxic and non-irritant behavior. This review highlights recent progresses towards the development of NLC for brain targeting of bioactives with particular reference to its surface modifications, formulations aspects, pharmacokinetic behavior and efficacy towards the treatment of various neurological disorders like AD, PD, schizophrenia, epilepsy, brain cancer, CNS infection (viral and fungal), multiple sclerosis, cerebral ischemia, and cerebral malaria. This work describes in detail the role and application of NLC, along with its different fabrication techniques and associated limitations. Specific emphasis is given to compile a summary and graphical data on the area explored by scientists and researchers worldwide towards the treatment of neurological disorders with or without NLC. The article also highlights a brief insight into two prime approaches for brain targeting, including drug delivery across BBB and direct nose-to-brain drug delivery along with the current global status of specific neurological disorders.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Sciences and Technology (CHARUSAT), Gujarat 388421, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India.
| |
Collapse
|
43
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
44
|
Wang M, Zhang Y, Ng M, Skripka A, Cheng T, Li X, Bhakoo KK, Chang AY, Rosei F, Vetrone F. One-pot synthesis of theranostic nanocapsules with lanthanide doped nanoparticles. Chem Sci 2020. [DOI: 10.1039/d0sc01033b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-pot synthesis of theranostic nanocapsules with lanthanide doped nanoparticles via interfacial templating condensation for upconversion based photodynamic therapy.
Collapse
Affiliation(s)
- Miao Wang
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie, Matériaux et Télécommunications
- Université du Québec
- Varennes (QC)
- Canada
| | - Yu Zhang
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science, Technology and Research (A*STAR)
- Singapore
| | - Michael Ng
- Singapore Bioimaging Consortium (SBIC)
- Agency for Science, Technology and Research (A*STAR)
- Singapore
| | - Artiom Skripka
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie, Matériaux et Télécommunications
- Université du Québec
- Varennes (QC)
- Canada
| | - Ting Cheng
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie, Matériaux et Télécommunications
- Université du Québec
- Varennes (QC)
- Canada
| | - Xu Li
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie, Matériaux et Télécommunications
- Université du Québec
- Varennes (QC)
- Canada
| | - Kishore Kumar Bhakoo
- Singapore Bioimaging Consortium (SBIC)
- Agency for Science, Technology and Research (A*STAR)
- Singapore
| | - Alex Y. Chang
- Department of Oncology
- Johns Hopkins University
- Baltimore
- USA
- Johns Hopkins Singapore
| | - Federico Rosei
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie, Matériaux et Télécommunications
- Université du Québec
- Varennes (QC)
- Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique (INRS)
- Centre Énergie, Matériaux et Télécommunications
- Université du Québec
- Varennes (QC)
- Canada
| |
Collapse
|
45
|
Polyphotosensitizer nanogels for GSH-responsive histone deacetylase inhibitors delivery and enhanced cancer photodynamic therapy. Colloids Surf B Biointerfaces 2019; 188:110753. [PMID: 31884084 DOI: 10.1016/j.colsurfb.2019.110753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
Photodynamic therapy (PDT) is one of the non-invasive and selective treatment methodologies for cancer. However, many highly efficient photosensitizers (PSs) are usually low physiological solubility, limited bioavailability and tending aggregation, impeding the effectiveness of PDT, as well as cancer resistance of PDT further reduce its therapeutic effect. Though some smart delivery systems have been developed, the problem of photosensitizer leakage/release has not been completely solved. Herein, we developed a smart therapeutic nanoplatform based on polyphotosensitizer nanogel as novel nanophotosensitizers and drug carriers. Moreover, by loading of histone deacetylase inhibitors (SAHA), it allows for enhanced synergistic therapy strategy of prostate cancer via inhibiting HIF-1α and VEGF pathways of cancer cells involved in PDT resistance. Our study presents the well-designed nanoplatform of nanogel-Ce6, which could serve as a photodynamic agent without Ce6 molecules release in the responsive environment, offering the potential to encapsulate diverse functional components for smart drug release and imaging-guided combination therapy in vitro and in vivo.
Collapse
|
46
|
Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019; 7:320. [PMID: 31803728 PMCID: PMC6873787 DOI: 10.3389/fbioe.2019.00320] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Non-invasive tracking for monitoring the selective delivery and transplantation of biotargeted agents in vivo has been employed as one of the most effective tools in the field of nanomedicine. Different nanoprobes have been developed and applied to bioimaging tissues and the treatment of diseases ranging from inflammatory and cardiovascular diseases to cancer. Herein, we will review the recent advances in the development of optics-responsive nanomaterials, including organic and inorganic nanoparticles, for multimodal bioimaging and targeted therapy. The main focus is placed on nanoprobe fabrication, mechanistic illustrations, and diagnostic, or therapeutical applications. These nanomedicine strategies have promoted a better understanding of the biological events underlying diverse disease etiologies, thereby facilitating diagnosis, illness evaluation, therapeutic effect, and drug discovery.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin Li
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, China
| |
Collapse
|
47
|
Gjuroski I, Girousi E, Meyer C, Hertig D, Stojkov D, Fux M, Schnidrig N, Bucher J, Pfister S, Sauser L, Simon HU, Vermathen P, Furrer J, Vermathen M. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J Control Release 2019; 316:150-167. [PMID: 31689463 DOI: 10.1016/j.jconrel.2019.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/02/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
Encapsulation of porphyrinic photosensitizers (PSs) into polymeric carriers plays an important role in enhancing their efficiency as drugs in photodynamic therapy (PDT). Porphyrin aggregation and low solubility as well as the preservation of the advantageous photophysical properties pose a challenge on the design of efficient PS-carrier systems. Block copolymer micelles (BCMs) and polyvinylpyrrolidone (PVP) are promising drug delivery vehicles for physical entrapment of PSs. BCMs exhibit enhanced dynamics as compared to the less flexible PVP network. In the current work the question is addressed how these different dynamics affect PS encapsulation, release from the carrier, reaction with serum proteins, and cellular uptake. The porphyrinic compounds serine-amide of chlorin e6 (SerCE) and chlorin e4 (CE4) were used as model PSs with different lipophilicity and aggregation properties. 1H NMR and fluorescence spectroscopy were applied to study their interactions with PVP and BCMs consisting of Kolliphor P188 (KP). Both chlorins were well encapsulated by the carriers and had improved photophysical properties. Compared to SerCE, the more lipophilic CE4 exhibited stronger hydrophobic interactions with the BCM core, stabilizing the system and preventing exchange with the surrounding medium as was shown by NMR NOESY and DOSY experiments. PVP and BCMs protected the encapsulated chlorins against interaction with human transferrin (Tf). However, SerCE and CE4 were released from BCMs in favor of binding to human serum albumin (HSA) while PVP prevented interaction with HSA. Fluorescence spectroscopic studies revealed that HSA binds to the surface of PVP forming a protein corona. PVP and BCMs reduced cellular uptake of the chlorins. However, encapsulation into BCMs resulted in more efficient cell internalization for CE4 than for SerCE. HSA significantly lowered both, free and carrier-mediated cell uptake for CE4 and SerCE. In conclusion, PVP appears as the more universal delivery system covering a broad range of host molecules with respect to polarity, whereas BCMs require a higher drug-carrier compatibility. Poorly soluble hydrophobic PSs benefit stronger from BCM-type carriers due to enhanced bioavailability through disaggregation and solubilization allowing for more efficient cell uptake. In addition, increased PS-carrier hydrophobic interactions have a stabilizing effect. For more hydrophilic PSs, the main advantage of polymeric carriers like PVP or poloxamer micelles lies in their protection during the transport through the bloodstream. HSA binding plays an important role for drug release and cell uptake in carrier-mediated delivery to the target tissue.
Collapse
Affiliation(s)
- Ilche Gjuroski
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland.
| | - Eleftheria Girousi
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Christoph Meyer
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Damian Hertig
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, sitem-insel AG, Freiburgstrasse 3, CH-3010, Bern, Switzerland; Institute of Clinical Chemistry, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Michaela Fux
- Institute of Clinical Chemistry, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Nicolas Schnidrig
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Jan Bucher
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Sara Pfister
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Luca Sauser
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Peter Vermathen
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, sitem-insel AG, Freiburgstrasse 3, CH-3010, Bern, Switzerland
| | - Julien Furrer
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Martina Vermathen
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland.
| |
Collapse
|
48
|
Jung S, Jung S, Kim DM, Lim SH, Shim YH, Kwon H, Kim DH, Lee CM, Kim BH, Jeong YI. Hyaluronic Acid-Conjugated with Hyperbranched Chlorin e6 Using Disulfide Linkage and Its Nanophotosensitizer for Enhanced Photodynamic Therapy of Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3080. [PMID: 31546620 PMCID: PMC6803876 DOI: 10.3390/ma12193080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 11/29/2022]
Abstract
The main purpose of this study is to synthesize novel types of nanophotosensitizers that are based on hyperbranched chlorin e6 (Ce6) via disulfide linkages. Moreover, hyperbranched Ce6 was conjugated with hyaluronic acid (HA) for CD44-receptor mediated delivery and redox-sensitive photodynamic therapy (PDT) against cancer cells. Hyperbranched Ce6 was considered to make novel types of macromolecular photosensitizer since most of the previous studies regarding nanophotosensizers are concerned with simple conjugation between monomeric units of photosensitizer and polymer materials. Hyperbranched Ce6 was synthesized by conjugation of Ce6 each other while using disulfide linkage. To synthesize Ce6 tetramer, carboxyl groups of Ce6 were conjugated with cystamine and three equivalents of Ce6 were then conjugated again with the end of amine groups of Ce6-cystamine. To synthesize Ce6 decamer as a hyperbranched Ce6, six equivalents of Ce6 was conjugated with the end of Ce6 tetramer via cystamine linkage. Furthermore, HA-cystamine was attached with Ce6 tetramer or Ce6 decamer to synthesize HA-Ce6 tetramer (Ce6tetraHA) or HA-Ce6 decamer (Ce6decaHA) conjugates. Ce6tetraHA and Ce6decaHA nanophotosensitizers showed small diameters of less than 200 nm. The addition of dithiothreitol (DTT) and hyaluronidase (HAse) induced a faster Ce6 release rate in vitro drug release study, which indicated that Ce6tetraHA nanophotosensitizers possess redox-sensitive and HAse-sensitive release properties. Ce6tetraHA nanophotosensitizers showed higher intracellular Ce6 accumulation, higher ROS generation, and higher PDT efficacy than that of Ce6 alone. Ce6tetraHA nanophotosensitizers responded to the CD44 receptor of cancer cell surface, i.e., the pre-treatment of HA blocked CD44 receptor of U87MG or HCT116 cells and then inhibited delivery of nanophotosensitizers in vitro cell culture study. Furthermore, in vivo tumorxenograft study showed that fluorescence intensity in the tumor tissues was stronger than those of other organs, while CD44 receptor blocking by HA pretreatment induced a decrease of fluorescence intensity in tumor tissues when compared to liver. These results indicated that Ce6tetraHA nanophotosensitizers delivered to tumors by redox-sensitive and CD44-sensitive manner.
Collapse
Affiliation(s)
- Shin Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Seunggon Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
| | - Doo Man Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Sa-Hoe Lim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
- Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | | | - Hanjin Kwon
- UltraV Co. Ltd. R&D Center, Seoul 04779, Korea.
| | - Do Hoon Kim
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Chang-Min Lee
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea.
| | - Byung Hoon Kim
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea.
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea.
| |
Collapse
|
49
|
Rosa P, Friedrich ML, Dos Santos J, Librelotto DRN, Maurer LH, Emanuelli T, da Silva CDB, Adams AIH. Desonide nanoencapsulation with açai oil as oil core: Physicochemical characterization, photostability study and in vitro phototoxicity evaluation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111606. [PMID: 31522112 DOI: 10.1016/j.jphotobiol.2019.111606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/16/2019] [Accepted: 08/24/2019] [Indexed: 11/30/2022]
Abstract
This study aimed to develop Eudragit® RL 100 nanocapsules loaded with desonide (DES) using açai oil (AO) or medium chain triglycerides (MCT) as oil core. Pre-formulation study showed that AO and MCT are suitable for nanocapsules preparation. The nanocapsules prepared with AO and MCT presented mean particle size around 165 and 131 nm, respectively; polydispersity index values <0.20, positive zeta potential values, drug content close to the theoretical value (0.25 mg mL-1), and DES encapsulation efficiency around 81%, regardless of the oil core (AO or MCT). Considering the photoinstability reported to DES, photodegradation studies were performed. The UV-A (365 nm) and UV-C (254 nm) photodegradation studies revealed less DES degradation when associated to the nanocapsules containing AO in comparison to those with MCT. The in vitro release study showed a biphasic release profile for both nanocapsule suspensions: an initial burst effect followed by a prolonged DES release. In addition, the formulations were considered non-phototoxic at 0.5 mg mL-1 when tested on 3 T3 murine fibroblasts and HaCaT human keratinocytes using the MTT and NRU viability assays. The irritant potential of the prepared nanocapsules and DES in free form were evaluated by HET-CAM method. All formulations were classified as slightly irritant, including the non-associate DES. In conclusion, the nanocapsule formulations developed in this study may be promising for therapeutic applications.
Collapse
Affiliation(s)
- Priscila Rosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mariane Lago Friedrich
- Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juliana Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Luana Haselein Maurer
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tatiana Emanuelli
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristiane de Bona da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil; Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Andréa Inês Horn Adams
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil; Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
50
|
Koshani R, Jafari SM. Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 2019; 270:123-146. [PMID: 31226521 DOI: 10.1016/j.cis.2019.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/30/2022]
Abstract
Developing green and facile approaches to produce nanostructures suitable for bioactives, nanoencapsulation faces some challenges in the nutraceutical and food bioactive industries due to potential risks arising from nanomaterials fabrication and consumption. High-intensity ultrasound is an effective technology to generate different bio-based structures in sub-micron or nanometer scale. This technique owing to some intrinsic advantages such as safety, straightforward operation, energy efficiency, and scale-up potential, as well as, ability to control over size and morpHology has stood out among various nanosynthetic routes. Ultrasonically-provided energy is mainly transferred to the droplets and particles via acoustic cavitation (which is formation, growth, and implosive collapse of bubbles in solvent). This review provides an outlook on the fundamentals of ultrasonication and some applicable setups in nanoencapsulation. Different kinds of nanostructures based on surfactants, lipids, proteins and carbohydrates formed by sonication, along with their advantages and disadvantages are assessed from the viewpoint of stability, particle size, and process impacts on some functionalities. The gastrointestinal fate and safety issues of ultrasonically prepared nanostructures are also discussed. Sonication, itself or in combination with other encapsulation approaches, alongside biopolymers generate nano-engineered carriers with enough stability, small particle sizes, and a low polydispersity. The nano-sized systems improve techno-functional activities of encapsulated bioactive agents including stability, solubility, dissolution, availability, controlled and targeted release profile in vitro and in vivo plus other bioactive properties such as antioxidant and antimicrobial capacities. Ultrasonically prepared nanocarriers show a great potential in fortifying food products with desired bioactive components, especially for the industrial applications.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp and Paper Research Centre, McGill University, Montreìal, Queìbec H3A 0B8, Canada; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|