1
|
Wang J, Yu Y, Dong H, Ji Y, Ning W, Li Y. The interface hydrophilic-hydrophobic integration of fluorinated defective graphene towards biomedical applications. Phys Chem Chem Phys 2025; 27:7538-7555. [PMID: 40167997 DOI: 10.1039/d5cp00075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In biomedical fields, rational design of novel two-dimensional (2D) biomedical nanomaterials aims to precisely manipulate biomolecules, including efficient capture, structural-functional transformation, directional movement, and self-assembly. In this work, we innovatively proposed new graphene nanosheets and selected two representative proteins to explore their binding mechanisms, structural-functional transformation of proteins, and biological effects of the materials. Fluorinated defective graphene (FDG) exhibited highly efficient capture and structural-functional transformation for the receptor binding domain (RBD), and we observed its collapse phenomenon in 2D materials for the first time. For the main protease (Mpro), FDG achieved an optimal balance between efficient capture, immobilization, and structural disruption. Further studies showed that fluorination on oxygen-containing defect graphene significantly enhanced variances in water distribution, surface properties, and hydrogen bond networks on the material surface. This allowed amino acids to be confined to specific areas, achieving efficient capture and directional movement. Additionally, the adsorption behavior and interaction strength of peptides and deoxynucleotides on FDG further validated the possibility of self-assembly. In summary, we highlight FDG as an excellent biomedical material with hydrophilic-hydrophobic integration.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Weihua Ning
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Abu Lila AS, Bhattacharya R, Moin A, Al Hagbani T, Abdallah MH, Danish Rizvi SM, Khafagy ES, Hussain T, Gangadharappa HV. Dual targeting multiwalled carbon nanotubes for improved neratinib delivery in breast cancer. RSC Adv 2023; 13:24309-24318. [PMID: 37583664 PMCID: PMC10424192 DOI: 10.1039/d3ra04732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
The aim of this study was to develop biotinylated chitosan (Bio-Chi) decorated multi-walled carbon nanotubes (MWCNTs) for breast cancer therapy with the tyrosine kinase inhibitor, neratinib (NT). For achieving such a purpose, carboxylic acid functionalized multiwalled carbon nanotubes (c-MWCNTs) were initially decorated non-covalently with biotin-chitosan (Bio-Chi) coating for achieving a dual targeting mode; pH-dependent release with chitosan and biotin-receptor mediated active targeting with biotin. Afterwards, Bio-Chi decorated c-MWCNTs were loaded with the tyrosine kinase inhibitor, neratinib (NT). The formulation was then characterized by dynamic light scattering, FTIR and EDX. The drug loading efficiency was estimated to be 95.6 ± 1.2%. In vitro drug release studies revealed a pH-dependent release of NT from Bio-Chi decorated c-MWCNTs, with a higher drug release under acidic pH conditions. Sulforhodamine B (SRB) cytotoxicity assay of different NT formulations disclosed dose-dependent cytotoxicities against SkBr3 cell line, with a superior cytotoxicity observed with NT-loaded Bio-Chi-coated c-MWCNTs, compared to either free NT or NT-loaded naked c-MWCNTs. The IC50 values for free NT, NT-loaded c-MWCNTs and NT-loaded Bio-Chi-coated c-MWCNTs were 548.43 ± 23.1 μg mL-1, 319.55 ± 17.9 μg mL-1, and 257.75 ± 24.5 μg mL-1, respectively. Interestingly, competitive cellular uptake studies revealed that surface decoration of drug-loaded c-MWCNTs with Bio-Chi permitted an enhanced uptake of c-MWCNTs by breast cancer cells, presumably, via biotin receptors-mediated endocytosis. To sum up, Bio-Chi-decorated c-MWCNTs might be a promising delivery vehicle for mediating cell-specific drug delivery to breast cancer cells.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Rohini Bhattacharya
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research Mysuru 570015 India
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
| | - Marwa Helmy Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il Ha'il 81442 Saudi Arabia
| | | |
Collapse
|
3
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
4
|
Barros MR, da Silva LP, Menezes TM, Garcia YS, Neves JL. Efficient tyrosinase nano-inhibitor based on carbon dots behaving as a gathering of hydrophobic cores and key chemical group. Colloids Surf B Biointerfaces 2021; 207:112006. [PMID: 34343910 DOI: 10.1016/j.colsurfb.2021.112006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Small organic molecules have been extensively applied to achieve enzymatic inhibition. Although numerous efforts have been made to deliver efficient inhibitors, small inhibitors applications are hindered by many drawbacks. Moreover, reporters comprising nanoparticle inhibitory activity against enzymes are very scarce in the literature. In this scenario, carbon nanodots (CDs) emerge as promising candidates for efficient enzyme inhibition due to their unique properties. Here, CDs specific molecular characteristics (core composition and chemical surface groups) have been investigated to produce a more potent enzyme inhibition. Mushroom tyrosinase (mTyr) has been adopted as an enzymatic prototype. The CDs revealed a high affinity to mTyr (Ka ≈ 106 M-1), mainly through hydrophobic forces and followed by slight mTyr structural alteration. CDs competitively inhibit mTyr, with low inhibition constant (KI = 517.7 ± 17.0 nM), which is up 70 fold smaller then the commercial inhibitor (kojic acid) and the starch nanoparticles previously reported. The results expose that the CDs act as a hydrophobic agglomerate with carboxyl groups on its surface, mimicking characteristics found on small molecule inhibitors (but with superior performance). All these results highlight the CD excellent potential as an efficient low toxic Tyr inhibitor, opening the prospect of using these nanoparticles in the cosmetic and food industries.
Collapse
Affiliation(s)
- Marcela Rodrigues Barros
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Lucas Pereira da Silva
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Thais Meira Menezes
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| | - Yarima Sanchez Garcia
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; Centro de estudos avanzados de Cuba, CEA, Valle Grande, La Lisa 17100, La Habana, Cuba.
| | - Jorge Luiz Neves
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil.
| |
Collapse
|
5
|
Chen M, Wang X, Zhang H. Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112388. [PMID: 33774561 DOI: 10.1016/j.jenvman.2021.112388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, we used xanthate to modify two waste biomass materials (corn cob and chestnut shell) and prepared them as biosorbents in one step for effectively removing Pb(II) from aqueous solutions containing only Pb(II) or Pb(II), Cu(II) and Cd(II). The two biosorbents were characterized by SEM, EDS, FTIR and Zeta potential analysis, and the results of the characterization were used to explore the adsorption mechanism of Pb(II) on biosorbents. We compare the Pb(II) removal ability of the two biosorbents and the investigated factors that affect Pb(II) removal. The results show that the adsorption capacity of xanthate modified corn cob (X-CC) and xanthate modified chestnut shell (X-CS) for Pb(II) is related to pH, reaction time, temperature and initial concentrations of both adsorbent and adsorbate. The adsorption of Pb(II) on X-CC and X-CS follows Langmuir isotherm equation and quasi-secondary kinetic equation, and their fitted qm values are 166.39 and 124.84 mg g-1, respectively. The analysis shows that the biosorbent has high selectivity to Pb(II) rather than Cu(II) and Cd(II), and still maintains a high removal rate of Pb(II) in actual wastewater. The biosorbents remove metal ions mainly through ion exchange reaction and the functional group in the material complexes with the metal to form micro-precipitation. The high adsorption capacity in aqueous solution and low costs in the manufacturing process of the present biosorbents ensure that they have great potential in practical applications for treating heavy-metal contaminated surface water.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China.
| | - Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hao Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
6
|
Chen L, Wang Y, Fu Y, Liu J, He W. Safe Fabrication and Characterization of NC/CL‐20/CnMs Nanoenergetic Composite Materials via Modified Sol‐Gel. ChemistrySelect 2020. [DOI: 10.1002/slct.202004386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ling Chen
- Key Laboratory of Special Energy Materials Ministry of Education Nanjing University of Science and Technology Jiangsu Nanjing 210094 P. R. China
| | - Yingbo Wang
- Key Laboratory of Special Energy Materials Ministry of Education Nanjing University of Science and Technology Jiangsu Nanjing 210094 P. R. China
| | - You Fu
- Key Laboratory of Special Energy Materials Ministry of Education Nanjing University of Science and Technology Jiangsu Nanjing 210094 P. R. China
| | - Jie Liu
- National Special Superfine Powder Engineering Research Center Nanjing University of Science and Technology
| | - Wei‐dong He
- Key Laboratory of Special Energy Materials Ministry of Education Nanjing University of Science and Technology Jiangsu Nanjing 210094 P. R. China
| |
Collapse
|
7
|
Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Sci Rep 2020; 10:16941. [PMID: 33037287 PMCID: PMC7547705 DOI: 10.1038/s41598-020-73963-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
This research work represents the first major step towards constructing an effective therapeutic silibinin (SB) in cancer treatment using oxidised multi-walled carbon nanotubes (MWCNT-COOH) functionalised with biocompatible polymers as the potential drug carrier. In an attempt to increase the solubility and dispersibility of SB-loaded nanotubes (MWSB), four water-soluble polymers were adopted in the preparation process, namely polysorbate 20 (T20), polysorbate 80 (T80), polyethylene glycol (PEG) and chitosan (CHI). From the geometry point of view, the hydrophobic regions of the nanotubes were loaded with water-insoluble SB while the hydrophilic polymers functionalised on the outer surfaces of the nanotubes serve as a protective shell to the external environment. The chemical interaction between MWSB nanocomposites and polymer molecules was confirmed by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Besides, high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA) and UV–visible spectrophotometry were also employed to characterise the synthesised nanocomposites. The morphological study indicated that the polymers were deposited on the external surfaces of MWSB and the nanocomposites were seen to preserve their tubular structures even after the coating process was applied. The TGA results revealed that the incorporation of biopolymers practically improved the overall thermal stability of the coated MWSB nanocomposites. Evaluation of the in vitro effect on drug release rate by the nanocomposites was found to follow a biphasic release manner, showing a fast release at an initial stage and then a sustained-release over 2500 min. Besides, the drug release mechanisms of the nanocomposites demonstrated that the amount of SB released in the simulated environment was governed by pseudo-second order in which, the rate-limiting step mainly depends on diffusion of drug through chemisorption reaction. Finally, MTT assay showed that the coated MWSB nanocomposites on 3T3 cells were very much biocompatible at a concentration up to 100 g/mL, which is an evidence of MWSB reduced cytotoxicity.
Collapse
|
8
|
Lu Y, Zhong L, Tang L, Wang H, Yang Z, Xie Q, Feng H, Jia M, Fan C. Extracellular electron transfer leading to the biological mediated production of reduced graphene oxide. CHEMOSPHERE 2020; 256:127141. [PMID: 32470738 DOI: 10.1016/j.chemosphere.2020.127141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
To explore a green, low-cost, and efficient strategy to synthesis reduced graphene oxide (RGO), the process and mechanism of the graphene oxide (GO) reduction by a model electrochemically active bacteria (EAB), Geobacter sulfurreducens PCA, were studied. In this work, up to 1.0 mg mL-1 of GO was reduced by G. sulfurreducens within 0.5-8 days. ID/IG ratio in reduced product was similar to chemically RGO. After microbial reduction, the peak which corresponded to the reflection of graphene oxide (001) disappeared, while another peak considered as graphite spacing (002) appeared. The peak intensity of typical oxygen function groups, such as carboxyl C-O and >O (epoxide) groups, diminished in bacterially induced RGO comparing to initial GO. Besides, we observed the doping of nitrogen and phosphorus elements in bacterially induced RGO. In a good agreement with that, better electrochemical performance was noticed after GO reduction. As confirmed with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) analysis, the maximum value of peak currents of bacterially induced RGO were significantly higher than those of GO. Our results showed the electron transfer at microbial cell/GO interface promoted the GO reduction, suggesting a broader application of EAB in biological mediated production of RGO.
Collapse
Affiliation(s)
- Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Huan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
9
|
Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS NANO 2020; 14:2585-2627. [PMID: 32031781 DOI: 10.1021/acsnano.9b08133] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy. However, nanomaterial applications in nanotheranostics are still in its infancy. This is due to the fact that each disease has a particular microenvironment with well-defined characteristics, which promotes deeper selection criteria of nanomaterials to meet the disease needs. In this review, we have outlined how nanomaterials are designed and tailored for nanotheranostics of cancer and other diseases such as neurodegenerative, autoimmune (particularly on rheumatoid arthritis), and cardiovascular diseases. The penetrability and retention of a nanomaterial in the biological system, the therapeutic strategy used, and the imaging mode selected are some of the aspects discussed for each disease. The specific properties of the nanomaterials in terms of feasibility, physicochemical challenges, progress in clinical trials, its toxicity, and their future application on translational medicine are addressed. Our review meticulously and critically examines the applications of nanotheranostics with various nanomaterials, including graphene, across several diseases, offering a broader perspective of this emerging field.
Collapse
Affiliation(s)
- Xin Yi Wong
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | - Amadeo Sena-Torralba
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Abstract
Carbon nanostructures (CNs), such as carbon nanotubes, fullerenes, carbon dots, nanodiamonds as well as graphene and its derivatives present a tremendous potential for various biomedical applications, ranging from sensing to drug delivery and gene therapy, biomedical imaging and tissue engineering. Since most of these applications encompass blood contact or intravenous injection, hemocompatibility is a critical aspect that must be carefully considered to take advantage of CN exceptional characteristics while allowing their safe use. This review discusses the hemocompatibility of different classes of CNs with the purpose of providing biomaterial scientists with a comprehensive vision of the interactions between CNs and blood components. The various complex mechanisms involved in blood compatibility, including coagulation, hemolysis, as well as the activation of complement, platelets, and leukocytes will be considered. Special attention will be paid to the role of CN size, structure, and surface properties in the formation of the protein corona and in the processes that drive blood response. The aim of this review is to emphasize the importance of hemocompatibility for CNs intended for biomedical applications and to provide some valuable insights for the development of new generation particles with improved performance and safety in the physiological environment.
Collapse
|
11
|
Multiwalled Carbon Nanotubes and the Electrocatalytic Activity of Gluconobacter oxydans as the Basis of a Biosensor. BIOSENSORS-BASEL 2019; 9:bios9040137. [PMID: 31739608 PMCID: PMC6955703 DOI: 10.3390/bios9040137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
This paper considers the effect of multiwalled carbon nanotubes (MWCNTs) on the parameters of Gluconobacter oxydans microbial biosensors. MWCNTs were shown not to affect the structural integrity of microbial cells and their respiratory activity. The positive results from using MWCNTs were due to a decrease in the impedance of the electrode. The total impedance of the system decreased significantly, from 9000 kOhm (G. oxydans/chitosan composite) to 600 kOhm (G. oxydans/MWCNTs/chitosan). Modification of the amperometric biosensor with nanotubes led to an increase in the maximal signal from 65 to 869 nA for glucose and from 181 to 1048 nA for ethanol. The biosensor sensitivity also increased 4- and 5-fold, respectively, for each of the substrates. However, the addition of MWCNTs reduced the affinity of respiratory chain enzymes to their substrates (both sugars and alcohols). Moreover, the minimal detection limits were not reduced despite a sensitivity increase. The use of MWCNTs thus improved only some microbial biosensor parameters.
Collapse
|