1
|
Yu Y, Zhang C, Yang X, Sun L, Bian F. Microfluidic Synthesis of Magnetic Nanoparticles for Biomedical Applications. SMALL METHODS 2025; 9:e2401220. [PMID: 39501972 DOI: 10.1002/smtd.202401220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/17/2024] [Indexed: 04/25/2025]
Abstract
Magnetic nanoparticles have attracted great attention and become promising candidates in the biomedicine field due to their special physicochemical properties. They are generally divided into metallic and non-metallic magnetic nanoparticles, according to their compositions. Both of the two types have shown practical values in biomedicine applications, such as drug delivery, biosensing, bioimaging, and so on. Research efforts are devoted to the improvement of synthesis strategies to achieve magnetic nanoparticles with controllable morphology, diverse composition, active surface, or multiple functions. Taking high repeatability, programmable operation, precise fluid control, and simple device into account, the microfluidics system can expand the production scale and develop magnetic nanoparticles with desired features. This review will first describe different classifications of promising magnetic nanoparticles, followed by the advancements in microfluidic synthesis and the latest biomedical applications of these magnetic nanoparticles. In addition, the challenges and prospects of magnetic nanoparticles in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Yunru Yu
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Changqing Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Yang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Lingyu Sun
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Feika Bian
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
2
|
Franco AJ, Alocilja E. Adsorption Studies of Salmonella Enteritidis and Escherichia coli on Chitosan-Coated Magnetic Nanoparticles. Cells 2025; 14:225. [PMID: 39937016 PMCID: PMC11817960 DOI: 10.3390/cells14030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
One of the challenges of microbiological testing is the complex and lengthy sample preparation, causing delays in getting the final result. Immunomagnetic separation is one of the sample preparation techniques recently used to overcome this complexity. However, it is expensive, fragile, and requires cold storage. This study aimed to use chitosan-coated magnetic nanoparticles (cMNP) to capture bacterial cells from a simulated matrix and understand the interaction between the bacteria and the cMNP using batch adsorption studies. To illustrate the concept, Salmonella Enteritidis and Escherichia coli were used. Results showed that the adsorption of Salmonella Enteritidis and E. coli fitted the pseudo-second-order kinetic model (R2 = 0.939 and 0.968, respectively) and the Freundlich isotherm model (R2 = 0.999 and 0.970, respectively). The increased ionic strength enhanced bacterial adsorption, and the highest capture efficiency was observed at pH 4 (32.8% and 98.1% for Salmonella Enteritidis and E. coli, respectively). These results show that chemisorption plays a significant role in bacterial adsorption to cMNP. Furthermore, increasing ionic strength and acidic pH (pH 4) significantly affects the adsorption of Salmonella Enteritidis and E. coli on cMNP, making them crucial for enhancing the performance of cMNP-based sample preparation methods.
Collapse
Affiliation(s)
- Anthony James Franco
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Sun Y, Feng J, Zhu W, Hou R, Zhang B, Ishag A. The recent advances of MnFe 2O 4-based nanoparticles in environmental application: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176378. [PMID: 39306129 DOI: 10.1016/j.scitotenv.2024.176378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The manganese ferrite (MnFe2O4)-based nanoparticles showed a substantial potential to remediate the various pollutants in environmental application due to low cost, simple magnetic separation and high removal capacity. Herein, the functionalization of various MnFe2O4-based nanoparticles was briefly summarized; Then the recent advances concerning the removal of pollutants (i.e., organics, heavy metals and antibacterial activity) on different MnFe2O4-based nanoparticles were reviewed in details. The reactivity of MnFe2O4-based nanoparticles was significantly influenced by environmental factors. It is demonstrated that interaction mechanism of various pollutants on magnetic MnFe2O4-based nanoparticles included degradation, adsorption, coordination, redox and precipitation. Finally, the current problems and future perspective of MnFe2O4-based nanoparticles were proposed. The highlight of this review is to compare the removal performance of MnFe2O4-based nanoparticles with the different hybrids. This review is crucial for the application of MnFe2O4-based nanoparticles in the environmental remediation.
Collapse
Affiliation(s)
- Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; Research Center of Applied Geology of China Geological Survey, Chengdu 610036, China.
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid 51111, Sudan
| |
Collapse
|
4
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024; 28:4515-4552. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
5
|
Chen W, Li J, Guo J, Li L, Wu H. Diagnosis and therapy of Alzheimer's disease: Light-driven heterogeneous redox processes. Adv Colloid Interface Sci 2024; 332:103253. [PMID: 39067260 DOI: 10.1016/j.cis.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Light-driven heterogeneous processes are promising approaches for diagnosing and treating Alzheimer's disease (AD) by regulating its relevant biomolecules. The molecular understanding of the heterogeneous interface environment and its interaction with target biomolecules is important. This review critically appraises the advances in AD early diagnosis and therapy employing heterogeneous light-driven redox processes, encompassing photoelectrochemical (PEC) biosensing, photodynamic therapy, photothermal therapy, PEC therapy, and photoacoustic therapy. The design strategies for heterogeneous interfaces based on target biomolecules and applications are also compiled. Finally, the remaining challenges and future perspectives are discussed. The present review may promote the fundamental understanding of AD diagnosis and therapy and facilitate interdisciplinary studies at the junction of nanotechnology and bioscience.
Collapse
Affiliation(s)
- Wenting Chen
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiahui Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Li
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau
| | - Hao Wu
- Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macau.
| |
Collapse
|
6
|
Mishra S, Yadav MD. Magnetic Nanoparticles: A Comprehensive Review from Synthesis to Biomedical Frontiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17239-17269. [PMID: 39132737 DOI: 10.1021/acs.langmuir.4c01532] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanotechnology has opened new doors of exploration, particularly in materials science and healthcare. Magnetic nanoparticles (MNP), the tiny magnets, because of their various properties, have the potential to bring about radical changes in the field of medicine. The distinctive surface chemistry, nontoxicity, biocompatibility, and, in particular, the inducible magnetic moment of magnetic materials has attracted a great deal of interest in morphological structures from a variety of scientific domains. This review presents a concise overview of MNPs and their crucial properties and synthesis routes. It also aims to highlight the continuous synthesis methods available for MNP production. In recent years, the use of computational methods for understanding the behavior of nanoparticles has been on the rise. Thus, we also discuss the numerical models developed to understand how magnetic nanoparticles can be used in magnetic hyperthermia and targeting the Circle of Wilis. With the increasing use of MNPs in biomedical applications, it becomes necessary to understand the mechanisms of toxicity, which are elucidated in this review. The review focuses on the biomedical applications of MNPs in drug delivery, theranostics, and MRI contrasting agents. We anticipate that this article will broaden the perspective on magnetic nanoparticles and help to understand their functionality and applicability better.
Collapse
Affiliation(s)
- Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Manishkumar D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
7
|
Barrera G, Celegato F, Vassallo M, Martella D, Coïsson M, Olivetti ES, Martino L, Sözeri H, Manzin A, Tiberto P. Microfluidic Detection of SPIONs and Co-Ferrite Ferrofluid Using Amorphous Wire Magneto-Impedance Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:4902. [PMID: 39123949 PMCID: PMC11315026 DOI: 10.3390/s24154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the magneto-impedance effect have attracted much attention due to their high sensitivity to the stray magnetic field generated by magnetic nanoparticles, their simple fabrication process, and their relatively low cost. To improve the sensitivity of these sensors, a multidisciplinary approach is required to study a wide range of soft magnetic materials as sensing elements and to customize the magnetic properties of nanoparticles. The combination of magneto-impedance sensors with ad hoc microfluidic systems favors the design of integrated portable devices with high specificity towards magnetic ferrofluids, allowing the use of very small sample volumes and making measurements faster and more reliable. In this work, a magneto-impedance sensor based on an amorphous Fe73.5Nb3Cu1Si13.5B9 wire as the sensing element is integrated into a customized millifluidic chip. The sensor detects the presence of magnetic nanoparticles in the ferrofluid and distinguishes the different stray fields generated by single-domain superparamagnetic iron oxide nanoparticles or magnetically blocked Co-ferrite nanoparticles.
Collapse
Affiliation(s)
- Gabriele Barrera
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Federica Celegato
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Marta Vassallo
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Daniele Martella
- European Laboratory for Non Linear Spectroscopy (LENS), via N. Carrara, 1, 50019 Florence, Italy;
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Florence, Italy
| | - Marco Coïsson
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Elena S. Olivetti
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Luca Martino
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Hüseyin Sözeri
- Magnetics Laboratory, TÜBITAK Ulusal Metroloji Enstitüsü (UME), Gebze Yerleşkesi, 41470 Kocaeli, Turkey;
| | - Alessandra Manzin
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| | - Paola Tiberto
- Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin, Italy; (F.C.); (M.V.); (M.C.); (E.S.O.); (L.M.); (A.M.); (P.T.)
| |
Collapse
|
8
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
9
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
10
|
Zhu P, Zhou L, Lin Y, Wang Y, Han Y, Cai S. A magnetic beads-based ligand fishing method Coupled with UHPLC-QTOF MS for screening and identification of α-glucosidase inhibitors from Houttuynia cordata Thunb. Talanta 2024; 270:125583. [PMID: 38141464 DOI: 10.1016/j.talanta.2023.125583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
In this study, a method for the screening and identification of α-glucosidase inhibitors from natural products was developed. The α-glucosidase was immobilized on carboxyl terminated magnetic beads to form a ligand fishing system to screen the potential inhibitors. A total of 9 compounds were fishing out from the crude Houttuynia cordata Thunb. extract. Meanwhile, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) was used for the identification of the chemical structures, including 3 chlorogenic acid isomers, 2 flavone C-glycosides and 4 flavone O-glycosides. The combination of enzyme immobilization magnetic beads and UHPLC-QTOF MS could be used for the screening of bioactive multi-components from herbs with appropriate targets. Taking the advantage of the specificity of enzyme binding and the convenience of magnetic separation, the method has great potential for rapid screening of α-glucosidase inhibitors from complicated natural product extracts.
Collapse
Affiliation(s)
- Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Luxi Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuxiu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yixi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yu Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Sheng Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
11
|
Ndlovu NL, Mdlalose WB, Ntsendwana B, Moyo T. Evaluation of Advanced Nanomaterials for Cancer Diagnosis and Treatment. Pharmaceutics 2024; 16:473. [PMID: 38675134 PMCID: PMC11054857 DOI: 10.3390/pharmaceutics16040473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a persistent global disease and a threat to the human species, with numerous cases reported every year. Over recent decades, a steady but slowly increasing mortality rate has been observed. While many attempts have been made using conventional methods alone as a theragnostic strategy, they have yielded very little success. Most of the shortcomings of such conventional methods can be attributed to the high demands of industrial growth and ever-increasing environmental pollution. This requires some high-tech biomedical interventions and other solutions. Thus, researchers have been compelled to explore alternative methods. This has brought much attention to nanotechnology applications, specifically magnetic nanomaterials, as the sole or conjugated theragnostic methods. The exponential growth of nanomaterials with overlapping applications in various fields is due to their potential properties, which depend on the type of synthesis route used. Either top-down or bottom-up strategies synthesize various types of NPs. The top-down only branches out to one method, i.e., physical, and the bottom-up has two methods, chemical and biological syntheses. This review highlights some synthesis techniques, the types of nanoparticle properties each technique produces, and their potential use in the biomedical field, more specifically for cancer. Despite the evident drawbacks, the success achieved in furthering nanoparticle applications to more complex cancer stages and locations is unmatched.
Collapse
Affiliation(s)
- Nkanyiso L. Ndlovu
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Wendy B. Mdlalose
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Bulelwa Ntsendwana
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Thomas Moyo
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
12
|
Ivanova P, Drozd M, Michrowski K, Karoń S, Mazurkiewicz-Pawlicka M, Pietrzak M. Au-X (X=Pt/Ru)-decorated magnetic nanocubes as bifunctional nanozyme labels in colorimetric, magnetically-enhanced, one-step sandwich CRP immunoassay. Biosens Bioelectron 2023; 237:115511. [PMID: 37429147 DOI: 10.1016/j.bios.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Scientific interest in the investigation and application of multifunctional nanomaterials in medical diagnostics has been increasing. The employment of magnetocatalytic immunoconjugates as both analyte-capturing agents and enzyme-like catalytic labels may enable rapid preconcentration and determination of relevant antigens. In this work, we synthesized and comprehensively characterized two types of noble metal-decorated magnetic nanocubes (MDMCs) which were subsequently applied in the one-step, sandwich nanozyme-linked immunosorbent assay (NLISA). Magnetic cores allow for rapid separation from complex samples of biological origin. The catalytically active shell composed of Au-decorated Pt or Ru can effectively mimic the activity of horseradish peroxididase, retaining at the same time the ability to form stable bioconstructs through self-assembly of thiolated ligands. As a result, hybrid multifunctional nanoparticles were synthesized and used to detect C-reactive protein (CRP) in serum samples. We have also paid considerable attention to the mechanistic studies of the formation of sandwich immunocomplexes with nanoparticle labels by means of immunoenzymatic methods and surface plasmon resonance. Analytical parameters of the Pt-MDMCs-labeled NLISA (detection limit LOD = 0.336 ng mL-1, recovery = 98.0%, linear response window covering two logarithmic units) turned out to be superior to the classical, one-step ELISA based on a horseradish peroxidase. In addition, our method offers further possibility of sensitivity adjustment by changing the parameters of magnetic preconcentration, together with good long-term stability of MDMCs conjugates and their good resistance to common interferences. We believe that the proposed simple synthetic protocol will guide a new approach to applying metal-decorated magnetic nanozymes as versatile and multifunctional labels for application in subsequent pre-analytical analyte concentration and immunoassays towards clinical applications.
Collapse
Affiliation(s)
- Polina Ivanova
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland; Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland; Section of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Marcin Drozd
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland; Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland
| | - Kamil Michrowski
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Sylwia Karoń
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland; Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland
| | - Marta Mazurkiewicz-Pawlicka
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Ludwika Waryńskiego 1, 00-645, Warsaw, Poland
| | - Mariusz Pietrzak
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland; Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
13
|
Al Abdullah S, Najm L, Ladouceur L, Ebrahimi F, Shakeri A, Al-Jabouri N, Didar TF, Dellinger K. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302673. [PMID: 39309539 PMCID: PMC11415277 DOI: 10.1002/adfm.202302673] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia worldwide, whereby neuronal death or malfunction leads to cognitive impairment in the elderly population. AD is highly prevalent, with increased projections over the next few decades. Yet current diagnostic methods for AD occur only after the presentation of clinical symptoms. Evidence in the literature points to potential mechanisms of AD induction beginning before clinical symptoms start to present, such as the formation of amyloid beta (Aβ) extracellular plaques and neurofibrillary tangles (NFTs). Biomarkers of AD, including Aβ 40, Aβ 42, and tau protein, amongst others, show promise for early AD diagnosis. Additional progress is made in the application of biosensing modalities to measure and detect significant changes in these AD biomarkers within patient samples, such as cerebral spinal fluid (CSF) and blood, serum, or plasma. Herein, a comprehensive review of the emerging nano-biomaterial approaches to develop biosensors for AD biomarkers' detection is provided. Advances, challenges, and potential of electrochemical, optical, and colorimetric biosensors, focusing on nanoparticle-based (metallic, magnetic, quantum dots) and nanostructure-based biomaterials are discussed. Finally, the criteria for incorporating these emerging nano-biomaterials in clinical settings are presented and assessed, as they hold great potential for enhancing early-onset AD diagnostics.
Collapse
Affiliation(s)
- Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
14
|
Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023; 15:1630. [PMID: 37376078 DOI: 10.3390/pharmaceutics15061630] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
15
|
Influence of Ce3+ (Rare Earth Element) on the Structural, Morphological, Impedance, Binding Energy and Ferrimagnetic Properties of Spinel ZnFe2O4 Nanoparticles Fabricated by the Coprecipitation Method: Antibacterial Activity. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Šuljagić M, Stanković D, Mirković M, Pavlović V, Petronijević I, Jeremić D, Andjelković L. Novel Solid-State Approach to Nickel Ferrite Electrocatalyst for the Detection of Gallic Acid. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362260201x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Mohammadpour-Haratbar A, Zare Y, Rhee KY. Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Adv Colloid Interface Sci 2022; 309:102795. [DOI: 10.1016/j.cis.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
|
18
|
Campanile R, Acunzo A, Scardapane E, Minopoli A, Martins VC, Di Girolamo R, Cardoso S, Velotta R, Della Ventura B, Iannotti V. Multifunctional Core@Satellite Magnetic Particles for Magnetoresistive Biosensors. ACS OMEGA 2022; 7:36543-36550. [PMID: 36278054 PMCID: PMC9583337 DOI: 10.1021/acsomega.2c04442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Magnetoresistive (MR) biosensors combine distinctive features such as small size, low cost, good sensitivity, and propensity to be arrayed to perform multiplexed analysis. Magnetic nanoparticles (MNPs) are the ideal target for this platform, especially if modified not only to overcome their intrinsic tendency to aggregate and lack of stability but also to realize an interacting surface suitable for biofunctionalization without strongly losing their magnetic response. Here, we describe an MR biosensor in which commercial MNP clusters were coated with gold nanoparticles (AuNPs) and used to detect human IgG in water using an MR biochip that comprises six sensing regions, each one containing five U-shaped spin valve sensors. The isolated AuNPs (satellites) were stuck onto an aggregate of individual iron oxide crystals (core) so that the resulting core@satellite magnetic particles (CSMPs) could be functionalized by the photochemical immobilization technique-an easy procedure that leads to oriented antibodies immobilized upright onto gold. The morphological, optical, hydrodynamic, magnetic, and surface charge properties of CSMPs were compared with those exhibited by the commercial MNP clusters showing that the proposed coating procedure endows the MNP clusters with stability and ductility without being detrimental to magnetic properties. Eventually, the high-performance MR biosensor allowed us to detect human IgG in water with a detection limit of 13 pM (2 ng mL-1). Given its portability, the biosensor described in this paper lends itself to a point-of-care device; moreover, the features of the MR biochip also make it suitable for multiplexed analysis.
Collapse
Affiliation(s)
- Raffaele Campanile
- Department
of Physics “E. Pancini”, University
of Naples Federico II, Via Cintia 26, 80126Naples, Italy
| | - Adriano Acunzo
- Department
of Physics “E. Pancini”, University
of Naples Federico II, Via Cintia 26, 80126Naples, Italy
| | - Emanuela Scardapane
- Department
of Physics “E. Pancini”, University
of Naples Federico II, Via Cintia 26, 80126Naples, Italy
| | - Antonio Minopoli
- Department
of Physics “E. Pancini”, University
of Naples Federico II, Via Cintia 26, 80126Naples, Italy
| | - Veronica C. Martins
- INESC—Microsistemas
e Nanotecnologias, Lisboa, Rua Alves Redol 9, 1000-049Lisbon, Portugal
| | - Rocco Di Girolamo
- Department
of Chemistry, University of Naples Federico
II, Via Cintia 26, 80126Naples, Italy
| | - Susana Cardoso
- INESC—Microsistemas
e Nanotecnologias, Lisboa, Rua Alves Redol 9, 1000-049Lisbon, Portugal
- Instituto
Superior Tecnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1649-004Lisboa, Portugal
| | - Raffaele Velotta
- Department
of Physics “E. Pancini”, University
of Naples Federico II, Via Cintia 26, 80126Naples, Italy
| | - Bartolomeo Della Ventura
- Department
of Physics “E. Pancini”, University
of Naples Federico II, Via Cintia 26, 80126Naples, Italy
| | - Vincenzo Iannotti
- Department
of Physics “E. Pancini”, University
of Naples Federico II, Via Cintia 26, 80126Naples, Italy
- CNR—SPIN
(Institute for Superconductors, Oxides and Other Innovative Materials
and Devices), Piazzale
V. Tecchio 80, 80125Naples, Italy
| |
Collapse
|
19
|
Evtugyn GA, Porfireva AV, Belyakova SV. Electrochemical DNA sensors for drug determination. J Pharm Biomed Anal 2022; 221:115058. [PMID: 36179503 DOI: 10.1016/j.jpba.2022.115058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In this review, recent achievements in the development of the DNA biosensors developed for the drug determination have been presented with particular emphasis to the main principles of their assembling and signal measurement approaches. The design of the DNA sensors is considered with characterization of auxiliary components and their necessity for the biosensor operation. Carbon nanomaterials, metals and their complexes as well as electropolymerized polymers are briefly described in the assembly of DNA sensors. The performance of the DNA sensors is summarized within 2017-2022 for various drugs and factors influencing the sensitivity and selectivity of the response are discussed. Special attention is paid to the mechanism of the signal generation and possible drawbacks in the analysis of real samples.
Collapse
Affiliation(s)
- G A Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation; Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation.
| | - A V Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - S V Belyakova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| |
Collapse
|
20
|
Safenkova IV, Burkin KM, Bodulev OL, Razo SC, Ivanov AV, Zherdev AV, Dzantiev BB, Sakharov IY. Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction. Talanta 2022; 247:123535. [DOI: 10.1016/j.talanta.2022.123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
|
21
|
Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal Chim Acta 2022; 1233:340362. [DOI: 10.1016/j.aca.2022.340362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
|
22
|
Enzyme immobilization: Implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Thadathil A, Kavil J, Kovummal GR, Jijil CP, Periyat P. Facile Synthesis of Polyindole/Ni 1-x Zn x Fe 2O 4 ( x = 0, 0.5, 1) Nanocomposites and Their Enhanced Microwave Absorption and Shielding Properties. ACS OMEGA 2022; 7:11473-11490. [PMID: 35415333 PMCID: PMC8992279 DOI: 10.1021/acsomega.2c00824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The present work reports the fabrication of polyindole (PIN)/Ni1-x Zn x Fe2O4 (x = 0, 0.5, 1) nanocomposites as efficient electromagnetic wave absorbers by a facile in situ emulsion polymerization method for the first time. The samples were characterized through Fourier transform infrared spectroscopy, UV-vis spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, high-resolution transmission electron microscopy, and vibrating sample magnetometry. The resulting polyindole/Ni1-x Zn x Fe2O4 (x = 0, 0.5, 1) nanocomposites offer better synergism among the Ni1-x Zn x Fe2O4 nanoparticles and PIN matrix, which significantly improved impedance matching. The best impedance matching of Ni1-x Zn x Fe2O4/polyindole (x = 0, 0.5, 1) nanocomposites was sought out, and the minimum reflection loss of the composites can reach up to -33 dB. The magnetic behavior, complex permittivity, permeability, and microwave absorption properties of polyindole/Ni1-x Zn x Fe2O4 (x = 0, 0.5, 1) nanocomposites have also been studied. The microwave absorbing characteristics of these composites were investigated in the 8-12 GHz range (X band) and explained based on eddy current, natural and exchange resonance, and dielectric relaxation processes. These results provided a new idea to upgrade the performance of conventional microwave-absorbing materials based on polyindole in the future.
Collapse
Affiliation(s)
- Anjitha Thadathil
- Department
of Chemistry, University of Calicut, Thenhipalam, Kerala 673635, India
| | - Jithesh Kavil
- Department
of Chemistry, University of Calicut, Thenhipalam, Kerala 673635, India
| | - Govind Raj Kovummal
- Department
of Chemistry, Malabar Christian College, Calicut, Kerala 673001, India
| | - Chamundi P. Jijil
- Department
of Chemistry, University of Calicut, Thenhipalam, Kerala 673635, India
| | - Pradeepan Periyat
- Department
of Environmental Studies, Kannur University, Kannur, Kerala 670567, India
| |
Collapse
|
24
|
Mahajan R, Suriyanarayanan S, Nicholls IA. Improved Solvothermal Synthesis of γ-Fe 2O 3 Magnetic Nanoparticles for SiO 2 Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1889. [PMID: 34443719 PMCID: PMC8398533 DOI: 10.3390/nano11081889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 01/16/2023]
Abstract
Monodisperse magnetic γ-Fe2O3 nanoparticles (MNPs) were prepared by a simple, improved, one-pot solvothermal synthesis using SDS and PEG 6000 as double capping reagents. This double protecting layer afforded better MNP uniformity (Z average 257 ± 11.12 nm, PDI = 0.18) and colloidal stability. Materials were characterized by DLS, SEM, TEM, XPS, and XRD. The use of these MNPs in the synthesis of core-shell structures with uniform and tunable silica coatings was demonstrated, as silica coated MNPs are important for use in a range of applications, including magnetic separation and catalysis and as platforms for templated nanogel synthesis.
Collapse
Affiliation(s)
- Rashmi Mahajan
- Linnaeus University Centre for Biomaterials Chemistry, Bioorganic and Biophysical Chemistry Laboratory, Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden;
| | - Subramanian Suriyanarayanan
- Linnaeus University Centre for Biomaterials Chemistry, Bioorganic and Biophysical Chemistry Laboratory, Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden;
| | | |
Collapse
|