1
|
Hu Y, Sun Y, Zeng X, Zhou C, Xia Q, Pan D, Wu Z, Huang M, Yan H. Enhanced interfacial stabilization of high internal phase emulsion using goose liver protein via ultrasonication fortified interfacial curcumin complexation. Food Res Int 2025; 203:115903. [PMID: 40022410 DOI: 10.1016/j.foodres.2025.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
The interfacial complexation between goose liver protein (GLP) and oily dispersed curcumin in impacting the protein interfacial dynamics and high internal phase emulsions (HIPEs) stabilization was validated. Results from surface hydrophobicity, size, atomic force microscopy, and fluorescence quenching showed that pre-ultrasonication (100 W, 300 W and 500 W) conduced to pronounced heterogeneous hydrophobic interaction that elevated GLP adsorption and association at the interface. The synergistic curcumin complexation with medium ultrasonication (300 W+Cur) maximized GLP interfacial deposition and elasticity (11.58 and 32.80 mN/m for π10800 and Ed) due to most sufficient GLP unfolding. The HIPE for 300 W+Cur gave the highest network intersection with densely packed droplets from the lowest D [4,3] (38.17 ± 0.20 μm) while highest oil holding (91.91 %) and rheological stability. Turbiscan stability index, TBARS and fatty acid profile suggested that the 300 W+Cur displayed also the highest physiochemical stability (40 °C, 7 days) via sufficient oil enclosure and networking, as was also the case when oil polarity varied. This study reported firstly that the HIPEs stabilization could be tuned by interfacial GLP-curcumin complexation affinity (i.e., through protein pre-ultrasonication), which could potentiate GLP based HIPEs with tailored rheological and mechanical properties for applications.
Collapse
Affiliation(s)
- Yangyang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongbing Yan
- Hangzhou Dakang Pickled Food, Co., Ltd. Hangzhou, 310020, PR China
| |
Collapse
|
2
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Wang H, Wang J, Zhang H, Wang X, Rao X. Quercetin encapsulation and release using rapid CO 2-responsive rosin-based surfactants in Pickering emulsions. Food Chem 2024; 458:140528. [PMID: 39047322 DOI: 10.1016/j.foodchem.2024.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Emulsion-based delivery systems are extensively employed for encapsulating functional active ingredients, protecting them from degradation, and enhancing bioavailability and release efficiency. Here, a CO2-responsive surfactant synthesized from rosin displays rapid responsiveness to CO2 at room temperature, transitioning reversibly switches between active and inactive states multiple times. The dual tertiary amines on the rosin rigid structure contributes to its CO2 sensitivity. When in its active cationic form, in conjunction with silica nanoparticles, it exhibits desired Pickering emulsification performance across various oil phases. In the Pickering emulsion loaded with quercetin, the encapsulation efficiency and loading efficiency reached 80.50% and 0.69%, respectively, with stability lasting at least 30 days. The system provides robust protection for quercetin against external factors, such as UV and heat, revealing sustained release effects. This study investigated the potential of using rosin-based CO2-responsive surfactants alongside nanoparticles to design stable Pickering emulsion systems for active substance encapsulation and sustained release.
Collapse
Affiliation(s)
- Hanwen Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Jiawei Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Hangyuan Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Xinyang Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
4
|
Wang Y, Sun Y, Tian Y, Xie Y, Li T, Zhang X, Wang Y, Huang J, Xia B, Wang S, Dong W. High internal phase Pickering emulsions stabilized by Zein-hyaluronic acid conjugate particles and their application in active substances protection. Carbohydr Polym 2024; 343:122498. [PMID: 39174107 DOI: 10.1016/j.carbpol.2024.122498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 07/13/2024] [Indexed: 08/24/2024]
Abstract
In recent years, active substances have been extensively applied in the fields of food, cosmetics, and pharmaceuticals. However, their preservation and transportation have posed challenges due to issues such as oxidation and photodegradation. This study proposes a method for synthesizing Zein-Hyaluronic Acid (Zein-HA) conjugate particles via the Schiff base reaction, utilizing these conjugate particles to encapsulate and protect active substances within a stable emulsion system. Compared to zein, the modified conjugate particles exhibit significantly improved dispersibility, amphiphilicity, interfacial affinity, and emulsifying properties. Consequently, these particles are capable of stabilizing high internal phase Pickering emulsions with an oil phase volume fraction of up to 80 (v/v)%, thereby enabling the carriage of a higher load of active components. Furthermore, the prepared emulsions demonstrate excellent storage stability, resistance to ionic strength (250-2000 mM NaCl), and outstanding antioxidative characteristics. Moreover, after 8 h of UV light exposure, the retention rates of the active substances (curcumin, astaxanthin, and resveratrol) exceed 60 %. Therefore, these emulsions hold substantial potential to be applied as a carrier system in the food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunze Tian
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
5
|
Cen S, Li S, Meng Z. Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Res Int 2024; 191:114703. [PMID: 39059910 DOI: 10.1016/j.foodres.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
7
|
Fan W, Shi Y, Hu Y, Zhang J, Liu W. Effects of the Combination of Protein in the Internal Aqueous Phase and Polyglycerol Polyricinoleate on the Stability of Water-In-Oil-In-Water Emulsions Co-Encapsulating Crocin and Quercetin. Foods 2023; 13:131. [PMID: 38201158 PMCID: PMC10779032 DOI: 10.3390/foods13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to diminish the reliance on water-in-oil-in-water (W/O/W) emulsions on the synthetic emulsifier polyglycerol polyricinoleate (PGPR). Considering the potential synergistic effects of proteins and PGPR, various protein types (whey, pea and chickpea protein isolates) were incorporated into the internal aqueous phase to formulate W/O/W emulsions. The effects of the combination of PGPR and protein at different ratios (5:0, 4:1, 3:2, 1:1 and 2:3) on the stability and encapsulation properties of W/O/W emulsions co-encapsulating crocin and quercetin were investigated. The findings indicated that the combination of PGPR and protein resulted in a slight reduction in the encapsulation efficiency of the emulsions, compared to that of PGPR (the control). Nonetheless, this combination significantly enhanced the physical stability of the emulsions. This result was primarily attributed to the smaller droplet sizes and elevated viscosity. These factors contributed to increased retentions of crocin (exceeding 70.04%) and quercetin (exceeding 80.29%) within the emulsions after 28 days of storage, as well as their improved bioavailability (increases of approximately 11.62~20.53% and 3.58~7.98%, respectively) during gastrointestinal digestion. Overall, combining PGPR and protein represented a viable and promising strategy for reducing the amount of PGPR and enhancing the stability of W/O/W emulsions. Notably, two plant proteins exhibited remarkable favorability in this regard. This work enriched the formulations of W/O/W emulsions and their application in the encapsulation of bioactive substances.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Yan Shi
- Department of Food Science and Engineering, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Jing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| |
Collapse
|
8
|
Gagliardi A, Irache JM, Cosco D. Editorial: Protein nanoparticles: characterization and pharmaceutical application. Front Pharmacol 2023; 14:1229068. [PMID: 37441533 PMCID: PMC10335394 DOI: 10.3389/fphar.2023.1229068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Juan M. Irache
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| |
Collapse
|