1
|
Liu X, Wang S, Wang S. Impact of trypsin on interfacial conformational evolution of soy protein isolate/soy hull polysaccharide emulsion. Int J Biol Macromol 2025; 308:142507. [PMID: 40154673 DOI: 10.1016/j.ijbiomac.2025.142507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The impact of trypsin on the demulsification mechanism of soy protein isolate (SPI)/soy hull polysaccharide (SHP) emulsion under trypsin treatment was investigated. We analyzed the conformational evolution of the emulsion interface induced during the bulk demulsification, focusing on the oil-water interface. During the enzymatic treatment for 0-120 min, various spectral analyses including spectrum analyses of Raman, FT-IR, intrinsic fluorescence, and ultraviolet spectral analyses demonstrated gradual hydrolysis and polymerization of protein molecules within SPI/SHP, SPI, and SHP on the oil-water interface by trypsin, particularly noticeable during 30-90 min. Notably, at 90 min, an increase in β-sheet content and a red shift of the IR spectrum from 3400 to 3380 cm-1 indicated the conjugate effect of small molecules due to large interfacial tension, accompanied by hydrophobic interaction and hydrogen bonding. These alterations in SPI/SHP, SPI, and SHP conformations at the oil-water interface led to droplet demulsification and oil phase release.
Collapse
Affiliation(s)
- Xiulin Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Żyła K, Duda A. Towards Improved Bioavailability of Cereal Inositol Phosphates, Myo-Inositol and Phenolic Acids. Molecules 2025; 30:652. [PMID: 39942756 PMCID: PMC11820786 DOI: 10.3390/molecules30030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Cereals are among the foods rich in myo-inositol hexakisphosphate (phytic acid, IP6), lower myo-inositol phosphates (IPx), a wide range of phenolic compounds, as well as vitamins, minerals, oligosaccharides, phytosterols and para-aminobenzoic acid, and are attributed with multiple bioactivities, particularly associated with the prevention of metabolic syndrome and colon cancer. The bran fraction of wheat, maize, brown rice and other cereals contains high levels of phytate, free and total phenolics, and endogenous enzymes such as amylases, phytase, xylanase, β-glucanase and feruloyl esterase, whose activities can be increased by germination. The preliminary steps of digestion begin in the oral cavity where substrates for the action of endogenous cereal and salivary enzymes start to be released from the food matrix. IP6 released from phytate complexes with arabinoxylans, starch and protein bodies would eventually enhance the absorption of nutrients, including phenolics, by regulating tight junctions and, together with ferulic acid (FA), would maintain cell barrier integrity and epithelial antibacterial immunity. In addition, both IP6 and FA exert potent and complementary antioxidant effects, while FA together with IPx generated through advanced hydrolysis of IP6 by endogenous and microbial phytases may affect digestive enzyme activity and incretin secretion, resulting in modulated insulin and glucagon release and prevention of various diabetic complications. Contrary to widespread negative attitudes towards phytate, in this review, we present the strategy of selecting cereals with high phytate and phenolic content, as well as high endogenous phytase, feruloyl esterase and endoxylanase activities, to produce value-added health-promoting foods. The advanced hydrolysis of phytate and phenolic compounds by cereal and/or microbial enzymes would generate substantial amounts of "enzymatically generated inositol" (EGI), including IP6, IPx and myo-inositol, the compounds that, together with free FA, provide enhanced bioavailability of cereal nutrients through multiple synergistic effects not previously realised.
Collapse
Affiliation(s)
- Krzysztof Żyła
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland
| | - Aleksandra Duda
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland
| |
Collapse
|
3
|
Sirvi A, Janjal A, Debaje S, Sangamwar AT. Influence of polymer and surfactant-based precipitation inhibitors on supersaturation-driven absorption of Ibrutinib from high-dose lipid-based formulations. Int J Pharm 2025; 669:125079. [PMID: 39674385 DOI: 10.1016/j.ijpharm.2024.125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
There is a growing pharmaceutical interest in supersaturated lipid-based formulations (Super-LbF) as an innovative strategy to enhance drug loading capacities while simultaneously reducing pill burden. This approach involves increasing the drug concentration above its equilibrium solubility in a lipid solution, achieved through temperature-induced supersaturation or the dissolution of lipophilic ionic salts. However, the physical instability and potential drug precipitation upon the dispersion of LbF remain critical. The focus of this work was to assess the impact of polymer and surfactant as precipitation inhibitors (PIs) in Super-LbF and investigate whether PIs can effectively address the aforementioned challenges. Ibrutinib (Ibr) was selected as a model drug due to its limited solubility and dissolution characteristics. The optimized formulations were characterized with a focus on dispersibility, lipolysis-permeation, and physical stability during storage. The inclusion of PIs in Super-LbF significantly enhanced physical stability by increasing viscosity and reducing the degree of supersaturation through elevated equilibrium solubility. During the dispersion and digestion study, varying levels of transient supersaturation were observed for both Super-LbF and PI-loaded Super-LbF. A noteworthy 2.5 to 3-fold increase in the solubilization ratio was observed for PI-loaded Super-LbF in comparison to Super-LbF without PI. This increase indicates a significant rise in transient drug supersaturation through kinetic and thermodynamic precipitation inhibition mechanisms. Moreover, lipolysis-permeation studies revealed increased flux values with enhanced solubilization, except in the case of Pluronic® F68, which exhibited a reduced free drug concentration near the Permeapad® barrier. Further, the in vivo absorption study confirmed that prolonged supersaturation, facilitated by PIs, contributed to enhancement in drug exposure in rats. PI-loaded Super-LbFs demonstrated a significant improvement (5.1 to 8.9-fold) in the absorption profile compared to Super-LbF without PI (p < 0.001). The study results indicate that incorporating PIs into Super-LbF enhances physical stability and maintains transient drug supersaturation under digestive conditions. Overall, this formulation approach shows promise for expanding the application of LbF to enable the successful oral delivery of high-dose regimen drugs.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Akash Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
4
|
Fan R, Wang W, Zhang R, Zhu M, Liu W, Liu P. Impact of hydrophobically modified cellulose nanofiber on the stability of Pickering emulsion containing insect protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:569-578. [PMID: 39287327 DOI: 10.1002/jsfa.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Cellulose nanofiber (CNF) is an ideal Pickering emulsion stabilizer because of its high aspect ratio and flexibility. CNF was hydrophobically modified by dodecenyl succinic anhydride and used to stabilize the simulated food emulsion system containing insect protein. The prepared dodecenyl succinate nanofiber (D-CNFs) was characterized by contact angle and laser particle size analyzer. The stability of the emulsion system under different conditions was characterized by zeta potential and appearance observation. Lastly, in vitro digestion simulation experiments were carried out to investigate whether the addition of D-CNFs had an effect on the digestion and absorption of oil. RESULTS The modification process for dodecenyl succinic anhydride to CNFs was that the system temperature was 40 °C, the system pH value was 8.5 and the reaction time was 6 h. The water contact angle of the modified CNFs increased to 83.2 ± 0.9°. D-CNFs were introduced into the simulated food emulsion system containing insect protein. The increase in the concentration of D-CNFs in the aqueous phase promoted the stability of the simulated emulsion system. Increasing the ratio of insect protein was not conducive to the stability of the emulsion. The final fat digestibility of the emulsion with D-CNFs was lower than that of the emulsion without D-CNFs. CONCLUSION Overall, the analysis and characterization results show the potential of the modified CNF as a food simulant emulsion stabilizer containing insect protein, which can be used for the development of specific functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rong Fan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin, China
| | - Wenxue Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin, China
| | - Rui Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin, China
| | - Ming Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin, China
| | - Wanyi Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin, China
| | - Pengtao Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
5
|
Taheri A, Almasri R, Wignall A, Schultz HB, Elz AS, Ariaee A, Bremmell KE, Joyce P, Prestidge CA. Enhancing the pharmacokinetics of abiraterone acetate through lipid-based formulations: addressing solubility and food effect challenges. Drug Deliv Transl Res 2024:10.1007/s13346-024-01755-y. [PMID: 39614037 DOI: 10.1007/s13346-024-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Abiraterone acetate, a prodrug of abiraterone, is an effective antiandrogen for treating metastatic prostate cancer. However, its poor aqueous solubility restricts oral bioavailability to under 10% in fasted conditions. Additionally, its pharmacokinetics are significantly influenced by food intake, leading to variable exposure that can impact treatment safety and efficacy. To overcome these challenges, we developed a series of lipid-based formulations aimed at reducing food effects and enhancing the fasted bioavailability of abiraterone acetate by incorporating the drug into colloidal delivery systems. Medium- and long-chain self-nanoemulsifying drug delivery systems (MC-SNEDDS and LC-SNEDDS) were formulated with abiraterone acetate loading at 80% of their respective preconcentrate equilibrium solubility. In-vitro gastrointestinal lipolysis experiments demonstrated that the SNEDDS formulations increased drug solubilisation by over 6-fold compared to pure abiraterone acetate and over 2-fold compared to the reference product after 60 min in the intestinal environment. In-vivo pharmacokinetic studies in rats revealed that both MC-SNEDDS and LC-SNEDDS formulations, along with their enteric-coated (EC) forms, exhibited enhanced bioavailability, with EC-LC-SNEDDS providing the highest performance, demonstrating a 7.32-fold increase in abiraterone exposure compared to the reference. Strong correlations were observed between in-vitro solubilisation and in-vivo AUC0 - 8 h (R2 = 0.980) and Cmax (R2 = 0.925). In-vivo pharmacokinetic studies in pigs demonstrated that EC-LC-SNEDDS improved drug systemic exposure in fasted conditions and mitigated positive food effects, showing a fed-to-fasted AUC0 - 8 h ratio of 108% compared to 334% with the reference. The developed lipid-based formulations hold promise in overcoming the pharmacokinetic challenges associated with abiraterone, potentially offering improved outcomes for patients.
Collapse
Affiliation(s)
- Ali Taheri
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ruba Almasri
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Hayley B Schultz
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Aurelia S Elz
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Amin Ariaee
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kristen E Bremmell
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
6
|
Sirvi A, Janjal A, Guleria K, Chand M, Sangamwar AT. Thermally-Induced Supersaturation Approach for Optimizing Drug Loading and Biopharmaceutical Properties of Supersaturated Lipid-Based Formulations: Case Studies with Ibrutinib and Enzalutamide. AAPS PharmSciTech 2024; 25:192. [PMID: 39164485 DOI: 10.1208/s12249-024-02912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Lipid-based formulations (LbFs) have demonstrated success in pharmaceutical applications; however, challenges persist in dissolving entire doses of the drug into defined liquid volumes. In this study, the temperature-induced supersaturation method was employed in LbF to address drug loading and pill burden issues. Supersaturated LbFs (super-LbF) were prepared using the temperature-induced supersaturation method, where the drug load is above its equilibrium solubility. Further, the influence of the drug's physicochemical and thermal characteristics on drug loading and their relevance with an apparent degree of supersaturation (aDS) was studied using two model drugs, ibrutinib and enzalutamide. All the prepared LbFs were evaluated in terms of physical stability, dispersion, and solubilization capacity, as well as pharmacokinetic assessments. Drug re-crystallization was observed in the lipid solution on long-term storage at higher aDS values of 2-2.5. Furthermore, high-throughput lipolysis studies demonstrated a significant decrease in drug concentration across all LbFs (regardless of drug loading) due to a decline in the formulation solvation capacity and subsequent generation of in-situ supersaturation. Further, the in vivo results demonstrated comparable pharmacokinetic parameters between conventional LbF and super-LbF. The short duration of the thermodynamic metastable state limits the potential absorption benefits. However, super-LbFs of Ibr and Enz showed superior profiles, with 1.7-fold and 5.2-fold increased drug exposure compared to their respective crystalline suspensions. In summary, this study emphasizes the potential of temperature-induced supersaturation in LbF for enhancing drug loading and highlights the intricate interplay between drug properties, formulation characteristics, and in vivo performance.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Akash Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Mahesh Chand
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India.
| |
Collapse
|
7
|
Sirvi A, Jadhav K, Sangamwar AT. Enabling superior drug loading in lipid-based formulations with lipophilic salts for a brick dust molecule: Exploration of lipophilic counterions and in vitro-in vivo evaluation. Int J Pharm 2024; 656:124108. [PMID: 38604540 DOI: 10.1016/j.ijpharm.2024.124108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Lipid-based formulations (LbFs) are an extensively used approach for oral delivery of poorly soluble drug compounds in the form of lipid suspension and lipid solution. However, the high target dose and inadequate lipid solubility limit the potential of brick dust molecules to be formulated as LbFs. Thus, the complexation of such molecules with a lipophilic counterion can be a plausible approach to improve the solubility in lipid-based solutions via reducing drug crystallinity and polar surface area. The study aimed to enhance drug loading in lipid solution for Nilotinib (Nil) through complexation or salt formation with different lipophilic counterions. We synthesized different lipophilic salts/ complexes via metathesis reactions and confirmed their formation by 1H NMR and FTIR. Docusate-based lipophilic salt showed improved solubility in medium-chain triglycerides (∼7 to 7.5-fold) and long-chain triglycerides (∼30 to 35-fold) based lipids compared to unformulated crystalline Nil. The increased lipid solubility could be attributed to the reduction in drug crystallinity which was further confirmed by the PXRD and DSC. Prototype LbFs were prepared to evaluate drug loading and their physicochemical characteristics. The findings suggested that structural features of counterion including chain length and lipophilicity affect the drug loading in LbF. In addition, physical stability testing of formulations was performed, inferring that aliphatic sulfate-based LbFs were stable with no sign of drug precipitation or salt disproportionation. An in vitro lipolysis-permeation study revealed that the primary driver of absorptive flux is the solubilization of the drug and reduced amount of lipid. Further, the in vivo characterization was conducted to measure the influence of increased drug load on oral bioavailability. Overall, the results revealed enhanced absorption of lipophilic salt-based LbF over unformulated crystalline Nil and conventional LbF (drug load equivalent to equilibrium solubility) which supports the idea that lipophilic salt-based LbF enhances drug loading, and supersaturation-mediated drug solubilization, unlocking the full potential of LbF.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Karan Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|