1
|
Cha JK, Park H, Jang SG, Choi C, Kwon Y, Lee SM, Kim Y, Jin BJ, Lee JH, Kwon SW, Kim WJ. Identification and validation of a major quantitative trait locus for precise control of heading date in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2025; 25:616. [PMID: 40348961 PMCID: PMC12065283 DOI: 10.1186/s12870-025-06646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Heading date (HD) is a crucial agronomic trait in wheat, significantly influencing both adaptation and yield. Despite having identical genotypes for the major heading genes Vrn-1 and Ppd-1, two Korean wheat cultivars, Jokyoung and Joongmo2008, exhibit substantial differences in heading date. However, the underlying genetic factors responsible for this variation remain unclear. To address this, we aimed to identify major quantitative trait loci (QTLs) associated with narrow-sense earliness under field conditions and develop a practical molecular marker for wheat breeding programs. RESULTS A recombinant inbred line (RIL) population was developed from a cross between the late-heading Jokyoung and the early-heading Joongmo2008 using speed breeding systems. The RILs were genotyped using a 35 K SNP chip, and a genetic map was constructed. A stable QTL for HD (qDH-3A) was identified on chromosome 3A, with an average logarithm of the odds (LOD) score of 59.4, explaining 72.6% of the phenotypic variance in HD across three years of field phenotyping. This indicates the robustness of qDH-3 A across multiple environments. Additionally, a kompetitive allele-specific PCR (KASP) marker linked to qDH-3A was developed and validated. The marker showed significant genotypic differences and effectiveness across diverse genetic backgrounds, including 616 worldwide wheat accessions. CONCLUSIONS The successful application of the KASP marker in both the RIL population and broader genetic resources highlights its potential use for marker-assisted selection (MAS) in wheat breeding programs. This study provides valuable insights into the genetic basis of HD in wheat and offers practical tools for developing cultivars better adapted to specific environmental conditions.
Collapse
Affiliation(s)
- Jin-Kyung Cha
- Department of Upland Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Miryang, 50424, Republic of Korea.
| | - Hyeonjin Park
- Department of Upland Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Miryang, 50424, Republic of Korea
| | - Seong-Gyu Jang
- Department of Upland Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Miryang, 50424, Republic of Korea
| | - Changhyun Choi
- Department of Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Youngho Kwon
- Department of Upland Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Miryang, 50424, Republic of Korea
| | - So-Myeong Lee
- Department of Upland Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Miryang, 50424, Republic of Korea
| | - Yurim Kim
- Department of Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Byung Jun Jin
- Department of Upland Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Miryang, 50424, Republic of Korea
| | - Jong-Hee Lee
- Department of Upland Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Miryang, 50424, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, 60463, Republic of Korea
| | - Woo-Jae Kim
- Department of Upland Crop Sciences, National Institute of Crop and Food Science, Rural Development Administration, Miryang, 50424, Republic of Korea
| |
Collapse
|
2
|
Xiang M, Tian B, Cao J, Liu S, Zhou C, Wang X, Zhang Y, Li J, Yuan X, Wan J, Yu R, Zheng W, Wu J, Zeng Q, Kang Z, Li C, Cui F, Han D. Yr29 combined with QYr.nwafu-4BL.3 confers durable resistance to stripe rust in wheat cultivar Jing 411. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:252. [PMID: 39425797 DOI: 10.1007/s00122-024-04758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
KEY MESSAGE The combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), causes substantial yield reductions globally, but losses can be minimized by using resistance genes. Chinese wheat cultivar Jing 411 (J411) has continued to display an acceptable level of adult-plant resistance (APR) to YR in varied field conditions since its release in the 1990s. A recombinant inbred line (RIL) population comprising 187 lines developed from a cross of J411 and Kenong 9204 (KN9204) was evaluated in multiple environments to identify genomic regions carrying genes for YR resistance. A total of five quantitative trait loci (QTL) on chromosome arm 1BL, 3BS, 4BL, 6BS, and 7BL from J411 and two QTL on 3DS and 7DL from KN9204 were detected using inclusive composite interval mapping with the wheat 660 K SNP array. QYr.nwafu-1BL.5 and QYr.nwafu-4BL.3 from J411 were robust and showed similar effects in all environments. QYr.nwafu-1BL.5 was likely the pleiotropic gene of Yr29/Lr46. QYr.nwafu-4BL.3 was located within a 1.0 cM interval delimited by KASP markers AX-111609222 and AX-89755491. Based on haplotype analysis, Yr29 and QYr.nwafu-4BL.3 were identified as genetic components of quantitative resistance in a number of wheat cultivars. Moreover, RILs with Yr29 and QYr.nwafu-4BL.3 individually or when combined showed higher resistance to YR in rust nurseries compared with RILs without them, and there was no negative effect of their presence on agronomic traits under rust-free conditions. These results suggest that effective polymerization strategy is important for breeding high yielding and durable resistance cultivars.
Collapse
Affiliation(s)
- Mingjie Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Bo Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianghao Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Caie Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yibo Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xunying Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jufen Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chunlian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Fa Cui
- College of Agriculture/Key Laboratory of Molecular Module-Based Breeding of High Yield and AbioticResistant Plants, Ludong University, Universities of Shandong, Yantai, Shandong, 264025, People's Republic of China.
| | - Dejun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
3
|
Feng X, Huang M, Lou X, Yang X, Yu B, Huang K, Yang S. Identification and Mapping of QTLs for Adult Plant Resistance in Wheat Line XK502. PLANTS (BASEL, SWITZERLAND) 2024; 13:2365. [PMID: 39273849 PMCID: PMC11396990 DOI: 10.3390/plants13172365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Stripe rust is a serious wheat disease occurring worldwide. At present, the most effective way to control it is to grow resistant cultivars. In this study, a population of 221 recombinant inbred lines (RILs) derived via single-seed descent from a hybrid of a susceptible wheat line, SY95-71, and a resistant line, XK502, was tested in three crop seasons from 2022 to 2024 in five environments. A genetic linkage map was constructed using 12,577 single-nucleotide polymorphisms (SNPs). Based on the phenotypic data of infection severity and the linkage map, five quantitative trait loci (QTL) for adult plant resistance (APR) were detected using the inclusive composite interval mapping (ICIM) method. These five loci are QYrxk502.swust-1BL, QYrxk502.swust-2BL, QYrxk502.swust-3AS, QYrxk502.swust-3BS, and QYrxk502.swust-7BS, explaining 5.67-19.64%, 9.63-36.74%, 9.58-11.30%, 9.76-23.98%, and 8.02-12.41% of the phenotypic variation, respectively. All these QTL originated from the resistant parent XK502. By comparison with the locations of known stripe rust resistance genes, three of the detected QTL, QYrxk502.swust-3AS, QYrxk502.swust-3BS, and QYrxk502.swust-7BS, may harbor new, unidentified genes. From among the tested RILs, 16 lines were selected with good field stripe rust resistance and acceptable agronomic traits for inclusion in breeding programs.
Collapse
Affiliation(s)
- Xianli Feng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoqin Lou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xue Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Boxun Yu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
4
|
Zeng C, Li L, He Z, Zhu W, Xu L, Cheng Y, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Chen G, Zhou Y, Wu D, Kang H. Introgression of tetraploid Thinopyrum elongatum 6EL segments enhances the stripe rust resistance of adult wheat plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:55. [PMID: 39157810 PMCID: PMC11327235 DOI: 10.1007/s11032-024-01493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Preventing the widespread occurrence of stripe rust in wheat largely depends on the identification of new stripe rust resistance genes and the breeding of cultivars with durable resistance. In previous study, we reported 6E of wheat-tetraploid Thinopyrum elongatum 6E (6D) substitution line contains adult-stage stripe rust resistance genes. In this study, three novel wheat-tetraploid Th. elongatum translocation lines were generated from the offspring of a cross between common wheat and the 6E (6D) substitution line. Genomic in situ hybridization (GISH), fluorescence in situ hybridization chromosome painting (FISH painting), repetitive sequential FISH, and 55 K SNP analyses indicated that K227-48, K242-82, and K246-6 contained 42 chromosomes and were 6DL·6ES, 2DL·6EL, and 6DS·6EL translocation lines, respectively. The assessment of stripe rust resistance revealed that K227-48 was susceptible to a mixture of Pst races, whereas the 6EL lines K242-82 and K246-6 were highly resistance to stripe rust at the adult stage. Thus, this resistance was due to the chromosome arm 6EL of tetraploid Th. elongatum. The improved agronomic performance of 6DS·6EL translocation line may be a useful novel germplasm resource for wheat breeding programs. For the application of marker-assisted selection (MAS), 47 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome 6E using the whole-genome sequence of diploid Th. elongatum. The 6DS·6EL translocation line and SSR markers have the potential to be deploy for future stripe rust resistance wheat breeding program. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01493-6.
Collapse
Affiliation(s)
- Chunyan Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Liangxi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zaimei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
- College of Resources, Sichuan Agricultural University, Chengdu, 611130 China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
- College of Resources, Sichuan Agricultural University, Chengdu, 611130 China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
- College of Resources, Sichuan Agricultural University, Chengdu, 611130 China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
5
|
Wang X, Xiang M, Li H, Li X, Mu K, Huang S, Zhang Y, Cheng X, Yang S, Yuan X, Singh RP, Bhavani S, Zeng Q, Wu J, Kang Z, Liu S, Han D. High-density mapping of durable and broad-spectrum stripe rust resistance gene Yr30 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:152. [PMID: 38850423 DOI: 10.1007/s00122-024-04654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
KEY MESSAGE The durable stripe rust resistance gene Yr30 was fine-mapped to a 610-kb region in which five candidate genes were identified by expression analysis and sequence polymorphisms. The emergence of genetically diverse and more aggressive races of Puccinia striiformis f. sp. tritici (Pst) in the past twenty years has resulted in global stripe rust outbreaks and the rapid breakdown of resistance genes. Yr30 is an adult plant resistance (APR) gene with broad-spectrum effectiveness and its durability. Here, we fine-mapped the YR30 locus to a 0.52-cM interval using 1629 individuals derived from residual heterozygous F5:6 plants in a Yaco"S"/Mingxian169 recombinant inbred line population. This interval corresponded to a 610-kb region in the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 2.1 on chromosome arm 3BS harboring 30 high-confidence genes. Five genes were identified as candidate genes based on functional annotation, expression analysis by RNA-seq and sequence polymorphisms between cultivars with and without Yr30 based on resequencing. Haplotype analysis of the target region identified six haplotypes (YR30_h1-YR30_h6) in a panel of 1215 wheat accessions based on the 660K feature genotyping array. Lines with YR30_h6 displayed more resistance to stripe rust than the other five haplotypes. Near-isogenic lines (NILs) with Yr30 showed a 32.94% higher grain yield than susceptible counterparts when grown in a stripe rust nursery, whereas there was no difference in grain yield under rust-free conditions. These results lay a foundation for map-based cloning Yr30.
Collapse
Affiliation(s)
- Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Mingjie Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Huaizhou Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiaoxiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Keqing Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yibo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiangrui Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xunying Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 56237, El Batan, Texcoco, Estado de Mexico, Mexico
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), 56237, El Batan, Texcoco, Estado de Mexico, Mexico
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Yang Y, Zhao T, Wang F, Liu L, Liu B, Zhang K, Qin J, Yang C, Qiao Y. Identification of candidate genes for soybean seed coat-related traits using QTL mapping and GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1190503. [PMID: 37384360 PMCID: PMC10293793 DOI: 10.3389/fpls.2023.1190503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/30/2023]
Abstract
Seed coat color is a typical morphological trait that can be used to reveal the evolution of soybean. The study of seed coat color-related traits in soybeans is of great significance for both evolutionary theory and breeding practices. In this study, 180 F10 recombinant inbred lines (RILs) derived from the cross between the yellow-seed coat cultivar Jidou12 (ZDD23040, JD12) and the wild black-seed coat accession Y9 (ZYD02739) were used as materials. Three methods, single-marker analysis (SMA), interval mapping (IM), and inclusive composite interval mapping (ICIM), were used to identify quantitative trait loci (QTLs) controlling seed coat color and seed hilum color. Simultaneously, two genome-wide association study (GWAS) models, the generalized linear model (GLM) and mixed linear model (MLM), were used to jointly identify seed coat color and seed hilum color QTLs in 250 natural populations. By integrating the results from QTL mapping and GWAS analysis, we identified two stable QTLs (qSCC02 and qSCC08) associated with seed coat color and one stable QTL (qSHC08) related to seed hilum color. By combining the results of linkage analysis and association analysis, two stable QTLs (qSCC02, qSCC08) for seed coat color and one stable QTL (qSHC08) for seed hilum color were identified. Upon further investigation using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we validated the previous findings that two candidate genes (CHS3C and CHS4A) reside within the qSCC08 region and identified a new QTL, qSCC02. There were a total of 28 candidate genes in the interval, among which Glyma.02G024600, Glyma.02G024700, and Glyma.02G024800 were mapped to the glutathione metabolic pathway, which is related to the transport or accumulation of anthocyanin. We considered the three genes as potential candidate genes for soybean seed coat-related traits. The QTLs and candidate genes detected in this study provide a foundation for further understanding the genetic mechanisms underlying soybean seed coat color and seed hilum color and are of significant value in marker-assisted breeding.
Collapse
Affiliation(s)
- Yue Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bingqiang Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yake Qiao
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
7
|
Hou S, Wu F, Wang Z, Yan N, Chen H, Li H, Yang P, Zhang Y, Li C, Lin Y, Ma J, Huang L, Liu Y. Mapping Stripe Rust Resistance QTL in 'N2496', a Synthetic Hexaploid Wheat Derivative. PLANT DISEASE 2023; 107:443-449. [PMID: 35802018 DOI: 10.1094/pdis-07-22-1518-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stripe rust is a destructive disease that affects plant growth and substantially reduces wheat yields globally. An economically and environmentally friendly way to control this disease is to use resistant cultivars. 'N2496' is a synthetic hexaploid wheat derivative that exhibits high resistance and could serve as a source of resistance for breeding programs. We developed three recombinant inbred lines (RILs) populations by crossing 'N2496' with common wheat cultivars 'CN16', 'CM107', and 'MM37'. Stripe rust responses were evaluated in all three populations using a mixture of current predominant Chinese Puccinia striiformis f. sp. tritici races. A stripe rust resistance quantitative trait locus (QTL) in the 'N2496'/'CN16' RIL population was mapped on chromosome arm 6BL at 519.35 to 526.55 Mb using bulked segregant RNA sequencing. The population was genotyped using simple sequence repeats and kompetitive allele-specific polymerase (KASP) markers. The QTL QYr.sicau-6B was localized to a 1.19-cM interval flanked by markers KASP-TXK-10 and KASP-TXK-6. The genetic effect of QYr.sicau-6B was validated in the 'N2496' × 'CM107' and 'N2496' × 'MM37' RILs populations and explained up to 63.16% of the phenotypic variation. RNA sequencing and quantitative real-time polymerase chain reaction identified two differentially expressed candidate genes in the physical interval of QYr.sicau-6B.
Collapse
Affiliation(s)
- Shuai Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Fangkun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Zhiqiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Ning Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Haojie Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Peiyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Ying Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Caixia Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| |
Collapse
|
8
|
Chen Q, Liu B, Ai L, Yan L, Lin J, Shi X, Zhao H, Wei Y, Feng Y, Liu C, Yang C, Zhang M. QTL and candidate genes for heterophylly in soybean based on two populations of recombinant inbred lines. FRONTIERS IN PLANT SCIENCE 2022; 13:961619. [PMID: 36051289 PMCID: PMC9427049 DOI: 10.3389/fpls.2022.961619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Heterophylly, the existence of different leaf shapes and sizes on the same plant, has been observed in many flowering plant species. Yet, the genetic characteristics and genetic basis of heterophylly in soybean remain unknown. Here, two populations of recombinant inbred lines (RILs) with distinctly different leaf shapes were used to identify loci controlling heterophylly in two environments. The ratio of apical leaf shape (LSUP) to basal leaf shape (LSDOWN) at the reproductive growth stage (RLS) was used as a parameter for classifying heterophylly. A total of eight QTL were detected for RLS between the two populations and four of them were stably identified in both environments. Among them, qRLS20 had the largest effect in the JS population, with a maximum LOD value of 46.9 explaining up to 47.2% of phenotypic variance. This locus was located in the same genomic region as the basal leaf shape QTL qLSDOWN20 on chromosome 20. The locus qRLS19 had the largest effect in the JJ population, with a maximum LOD value of 15.2 explaining up to 27.0% of phenotypic variance. This locus was located in the same genomic region as the apical leaf shape QTL qLSUP19 on chromosome 19. Four candidate genes for heterophylly were identified based on sequence differences among the three parents of the two mapping populations, RT-qPCR analysis, and gene functional annotation analysis. The QTL and candidate genes detected in this study lay a foundation for further understanding the genetic mechanism of heterophylly and are invaluable in marker-assisted breeding.
Collapse
Affiliation(s)
- Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Bingqiang Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lijuan Ai
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jing Lin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yu Wei
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yan Feng
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Hu C, Wang F, Feng J, Sun C, Guo J, Lang X, Hu J, Bai B, Zhang W, Li H, Lin R, Xu S. Identification and molecular mapping of YrBm for adult plan resistance to stripe rust in Chinese wheat landrace Baimangmai. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2655-2664. [PMID: 35781583 DOI: 10.1007/s00122-022-04139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
A new adult plan resistance gene YrBm for potentially durable resistance to stripe rust was mapped on wheat chromosome arm 4BL in landrace Baimangmai. SSR markers closely flanking YrBm were developed and validated for use in marker-assisted selection. The wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) frequently acquires new virulences and rapidly adapts to environmental stress. New virulences in Pst populations can cause previously resistant varieties to become susceptible. If those varieties were widely grown, consequent epidemics can lead to yield losses. Identification and deployment of genes for durable resistance are preferred method for disease control. The Chinese winter wheat landrace Baimangmai showed a high level of adult plant resistance (APR) to stripe rust in a germplasm evaluation trial at Langfang in Hebei province in 2006 and has continued to confer high resistance over the following 15 years in field nurseries in Hebei, Sichuan and Gansu. A recombinant inbred line population of 200 F10 lines developed from a cross of Baimangmai and a susceptible genotype segregated for APR at a single locus on chromosome 4BL; the resistance allele was designated YrBm. Allelism tests of known Yr genes on chromosome 4B and unique closely flanking marker alleles Xgpw7272189 and Xwmc652164 among a panel of Chinese wheat varieties indicated that YrBm was located at a new locus. Moreover, those markers can be used for marker-assisted selection in breeding for stripe rust resistance.
Collapse
Affiliation(s)
- Chaoyue Hu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cai Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Resources and Environment, Maotai Institute, Zunyi, 564507, Guizhou, China
| | - Xiaowei Lang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinghuang Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Wentao Zhang
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Hongjie Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiming Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Shichang Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Liu S, Wang X, Zhang Y, Jin Y, Xia Z, Xiang M, Huang S, Qiao L, Zheng W, Zeng Q, Wang Q, Yu R, Singh RP, Bhavani S, Kang Z, Han D, Wang C, Wu J. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:351-365. [PMID: 34665265 DOI: 10.1007/s00122-021-03970-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
YrFDC12 and PbcFDC, co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only QYr.nwafu-3BS from RH520 and QYr.nwafu-4BL.2 (named YrFDC12 for convenience) from FDC12 were consistent across the four testing environments. QYr.nwafu-3BS is likely the pleiotropic resistance gene Sr2/Yr30. YrFDC12 was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers AX-111121224 and AX-89518393. Lines harboring both Yr30 and YrFDC12 displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci Pbc1 and PbcFDC12, which co-segregated with Yr30 and YrFDC12, respectively. Both marker-based and pedigree-based kinship analyses revealed that YrFDC12 was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the YrFDC12 haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yayun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yangang Jin
- Jiangsu Ruihua Agricultural Science and Technology Co. Ltd, Suqian, 223800, Jiangsu, People's Republic of China
| | - Zhonghua Xia
- Jiangsu Ruihua Agricultural Science and Technology Co. Ltd, Suqian, 223800, Jiangsu, People's Republic of China
| | - Mingjie Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agriculture, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Changfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
11
|
Liu J, Tang H, Qu X, Liu H, Li C, Tu Y, Li S, Habib A, Mu Y, Dai S, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Chen G, Li W, Jiang Y, Wei Y, Lan X, Zheng Y, Ma J. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. PLANT MOLECULAR BIOLOGY 2020; 104:173-185. [PMID: 32734417 DOI: 10.1007/s11103-020-01035-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
A novel and major QTL for the effective tiller number was identified on chromosomal arm 1BL and validated in two genetic backgrounds The effective tiller number (ETN) substantially influences plant architecture and the wheat yield improvement. In this study, we constructed a genetic map of the 2SY (20828/SY95-71) recombinant inbred line population based on the Wheat 55K array as well as the simple sequence repeat (SSR) and Kompetitive Allele Specific PCR (KASP) markers. A comparison between the genetic and physical maps indicated the marker positions were consistent in the two maps. Additionally, we identified seven tillering-related quantitative trait locus (QTLs), including Qetn-sau-1B.1, which is a major QTL localized to a 6.17-cM interval flanked by markers AX-89635557 and AX-111544678 on chromosome 1BL. The Qetn-sau-1B.1 QTL was detected in eight environments and explained 12.12-55.71% of the phenotypic variance. Three genes associated with the ETN were detected in the physical interval of Qetn-sau-1B.1. We used a tightly linked KASP marker, KASP-AX-110129912, to further validate this QTL in two other populations with different genetic backgrounds. The results indicated that Qetn-sau-1B.1 significantly increased the ETN by up to 23.5%. The results of this study will be useful for the precise mapping and cloning of Qetn-sau-1B.1.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuiqing Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shoufeng Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Genievskaya Y, Turuspekov Y, Rsaliyev A, Abugalieva S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of South Kazakhstan. PeerJ 2020; 8:e9820. [PMID: 32944423 PMCID: PMC7469934 DOI: 10.7717/peerj.9820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Abstract
Common or bread wheat (Triticum aestivum L.) is the most important cereal crop in the world, including Kazakhstan, where it is a major agricultural commodity. Fungal pathogens producing leaf, stem, and yellow (stripe) rusts of wheat may cause yield losses of up to 50-60%. One of the most effective methods for preventing these losses is to develop resistant cultivars with high yield potential. This goal can be achieved using complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. In this study, a panel consisting of 215 common wheat cultivars and breeding lines from Kazakhstan, Russia, Europe, USA, Canada, Mexico, and Australia, with a wide range of resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR) diseases, was analyzed under field conditions in Southern Kazakhstan. The collection was genotyped using the 20K Illumina iSelect DNA array, where 11,510 informative single-nucleotide polymorphism markers were selected for further genome-wide association study (GWAS). Evaluation of the phenotypic diversity over 2 years showed a mostly mixed reaction to LR, mixed reaction/moderate susceptibility to SR, and moderate resistance to YR among wheat accessions from Kazakhstan. GWAS revealed 45 marker-trait associations (MTAs), including 23 for LR, 14 for SR, and eight for YR resistances. Three MTAs for LR resistance and one for SR resistance appeared to be novel. The MTAs identified in this work can be used for marker-assisted selection of common wheat in Kazakhstan in breeding new cultivars resistant to LR, SR, and YR diseases. These findings can be helpful for pyramiding genes with favorable alleles in promising cultivars and lines.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Yerlan Turuspekov
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan.,Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky, Zhambyl Region, Kazakhstan
| | - Saule Abugalieva
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan.,Kazakh National Agrarian University, Almaty, Kazakhstan
| |
Collapse
|
13
|
Ma Z, Gao W, Liu L, Liu M, Zhao N, Han M, Wang Z, Jiao W, Gao Z, Hu Y, Liu Q. Identification of QTL for resistance to root rot in sweetpotato (Ipomoea batatas (L.) Lam) with SSR linkage maps. BMC Genomics 2020; 21:366. [PMID: 32414325 PMCID: PMC7229581 DOI: 10.1186/s12864-020-06775-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sweetpotato root rot is a devastating disease caused by Fusarium solani that seriously endangers the yield of sweetpotato in China. Although there is currently no effective method to control the disease, breeding of resistant varieties is the most effective and economic option. Moreover, quantitative trait locus (QTL) associated with resistance to root rot have not yet been reported, and the biological mechanisms of resistance remain unclear in sweetpotato. Thus, increasing our knowledge about the mechanism of disease resistance and identifying resistance loci will assist in the development of disease resistance breeding. RESULTS In this study, we constructed genetic linkage maps of sweetpotato using a mapping population consisting of 300 individuals derived from a cross between Jizishu 1 and Longshu 9 by simple sequence repeat (SSR) markers, and mapped seven QTLs for resistance to root rot. In total, 484 and 573 polymorphic SSR markers were grouped into 90 linkage groups for Jizishu 1 and Longshu 9, respectively. The total map distance for Jizishu 1 was 3974.24 cM, with an average marker distance of 8.23 cM. The total map distance for Longshu 9 was 5163.35 cM, with an average marker distance of 9.01 cM. Five QTLs (qRRM_1, qRRM_2, qRRM_3, qRRM_4, and qRRM_5) were located in five linkage groups of Jizishu 1 map explaining 52.6-57.0% of the variation. Two QTLs (qRRF_1 and qRRF_2) were mapped on two linkage groups of Longshu 9 explaining 57.6 and 53.6% of the variation, respectively. Furthermore, 71.4% of the QTLs positively affected the variation. Three of the seven QTLs, qRRM_3, qRRF_1, and qRRF_2, were colocalized with markers IES43-5mt, IES68-6 fs**, and IES108-1 fs, respectively. CONCLUSIONS To our knowledge, this is the first report on the construction of a genetic linkage map for purple sweetpotato (Jizishu 1) and the identification of QTLs associated with resistance to root rot in sweetpotato using SSR markers. These QTLs will have practical significance for the fine mapping of root rot resistance genes and play an important role in sweetpotato marker-assisted breeding.
Collapse
Affiliation(s)
- Zhimin Ma
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.,Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Wenchuan Gao
- Baoji Institute of Agriculture Science, Qishan, 722499, Shaanxi, China
| | - Lanfu Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Minghui Liu
- Baoji Institute of Agriculture Science, Qishan, 722499, Shaanxi, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meikun Han
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Zhao Wang
- Baoji Institute of Agriculture Science, Qishan, 722499, Shaanxi, China
| | - Weijing Jiao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Zhiyuan Gao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Yaya Hu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China.
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Mu J, Wu J, Liu S, Dai M, Sun D, Huang S, Wang Q, Zeng Q, Yu S, Chen L, Kang Z, Han D. Genome-Wide Linkage Mapping Reveals Stripe Rust Resistance in Common Wheat ( Triticum aestivum) Xinong1376. PLANT DISEASE 2019; 103:2742-2750. [PMID: 31509495 DOI: 10.1094/pdis-12-18-2264-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, also known as yellow rust, is a significant threat to wheat yield worldwide. Adult plant resistance (APR) is the preferred way to obtain durable protection. Chinese winter wheat cultivar Xinong1376 has maintained acceptable APR to stripe rust in field environments. To characterize APR in this cultivar, 190 F10 recombinant inbred lines (RILs) developed from Xiaoyan81 × Xinong1376 were evaluated for infection type and disease severity in fields either artificially or naturally inoculated. The population along with parents were genotyped using the Illumina 90K single-nucleotide polymorphism arrays. Six quantitative trait loci (QTL) were detected using the inclusive composite interval mapping method. QYr.nwafu-4AL and QYr.nwafu-6BL.3 conferred stable resistance in all environments, and likely corresponded to a gene-rich region on the long arm of chromosomes 4A and 6B. QYr.nwafu-5AL, QYr.nwafu-5BL, QYr.nwafu-3BL.1, and QYr.nwafu-3BL.2 were detected only in some environments but enhanced the level of resistance conferred by QYr.nwafu-4AL and QYr.nwafu-6BL.3. Kompetitive allele-specific PCR (KASP) markers developed for QYr.nwafu-4AL and QYr.nwafu-6BL.3 were confirmed in a subset of RILs and 133 wheat genotypes. The QTL on 4AL and 6BL with their linked KASP markers would be useful for marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Miaofei Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daojie Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Chen
- Extension Center for Agriculture Technology, Agriculture Department of Tibetan Autonomous Region, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|