1
|
Zhou R, Bai G, Zhu D, Xu Q, Zhang X, Li T, Qian Y, Bu C. Pump-free SERS microfluidic chip based on an identification-competition strategy for ultrasensitive and efficient simultaneous detection of liver cancer-related microRNAs. BIOMEDICAL OPTICS EXPRESS 2024; 15:6469-6485. [PMID: 39553886 PMCID: PMC11563321 DOI: 10.1364/boe.542523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
In this study, we present a pump-free SERS microfluidic chip capable of detecting liver cancer-related miR-21 and miR-155 concurrently with ultra-sensitivity and high efficiency. We employed a Fe3O4@cDNA-AuNPs@Raman reporter@H composite structure and a recognition competition strategy. When the target miRNAs (miR-21 and miR-155) are present in the test liquid, they specifically compete with the nucleic acid complementary strand(H) of Fe3O4@cDNA-AuNPs@Raman reporter@H, causing AuNPs to competitively detach from the surface of Fe3O4, resulting in a decrease in the SERS signal. Consequently, this pump-free SERS microfluidic chip enables the detection of the target miRNAs more rapidly and accurately in complex environments. This method offers an approach for the simultaneous and efficient detection of miRNAs and holds promising applications in the early diagnosis of liver cancer.
Collapse
Affiliation(s)
- Ruoyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Guangfu Bai
- Affiliated Huishan Hospital of Medical College, Yangzhou University, Wuxi Huishan District People's Hospital, Wuxi 214187, Jiangsu Province, China
| | - Dongxu Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Qiong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xudong Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Tianran Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Chiwen Bu
- Department of General Surgery, Guanyun County People's Hospital, Lianyungang 222200, China
| |
Collapse
|
2
|
Hong Q, Chen W, Zhang Z, Chen Q, Wei G, Huang H, Yu Y. Nasopharyngeal carcinoma cell screening based on the electroporation-SERS spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123747. [PMID: 38091653 DOI: 10.1016/j.saa.2023.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor in head and neck. Early diagnosis can effectively improve the survival rate of patients. Nasopharyngeal exfoliative cytology, as a convenient and noninvasive auxiliary diagnostic method, is suitable for the population screening of NPC, but its diagnostic sensitivity is low. In this study, an electroporation-based SERS technique was proposed to detect and screen the clinical nasopharyngeal exfoliated cell samples. Firstly, nasopharyngeal swabs was used to collected the nasopharyngeal exfoliated cell samples from NPC patients (n = 54) and healthy volunteers (n = 60). Then, gold nanoparticles, as the Raman scattering enhancing substrates, were rapidly introduced into cells by electroporation technique for surface-enhanced Raman scattering (SERS) detection. Finally, SERS spectra combined with principal component analysis (PCA) and linear discriminant analysis (LDA) were employed to diagnose and distinguish NPC cell samples. Raman peak assignments combined with spectral differences reflected the biochemical changes associated with NPC, including nucleic acid, amino acid and carbohydrates. Based on the PCA-LDA approach, the sensitivity, specificity and accuracy of 98.15 %, 96.67 % and 97.37 %, respectively, were achieved for screening NPC. This study offers valuable assistance for noninvasive NPC auxiliary diagnosis, and has grate potential in expanding the application of the SERS technique in clinical cell sample testing.
Collapse
Affiliation(s)
- Quanxing Hong
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Weiwei Chen
- Department of Medical Technology, Fujian Health College, Fuzhou 350101, China
| | - Zhongping Zhang
- The Third Affiliated People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Qin Chen
- The Second Affiliated People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Guoqiang Wei
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Hao Huang
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yun Yu
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
3
|
Majdinasab M, Azziz A, Liu Q, Mora-Sanz V, Briz N, Edely M, Lamy de la Chapellea M. Label-free SERS for rapid identification of interleukin 6 based on intrinsic SERS fingerprint of antibody‑gold nanoparticles conjugate. Int J Biol Macromol 2023; 253:127560. [PMID: 37884230 DOI: 10.1016/j.ijbiomac.2023.127560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
A label-free surface-enhanced Raman scattering (SERS) was designed for sensitive detection of interleukin-6 (IL-6). The sensing element composed of anti-IL-6 antibodies adsorbed on the surface of spherical gold nanoparticles (AuNPs) as SERS-active surface. The principle of detection was probing antibody conformational changes using its intrinsic SERS fingerprint after binding to IL-6. Comparison of SERS spectra of antibody before and after binding to IL-6 showed that secondary structure of antibody does not change upon binding to IL-6. Vibrational information from disulfide bonds ν(SS) in antibody structure indicated some changes of geometry around SS bridges as a consequence of the immunocomplex formation. Transmission electron microscopy (TEM) and UV-Vis spectroscopy were used to confirm AuNPs conjugation with antibody as well as IL-6 binding to antibody on the surface of AuNPs. The SERS-based immunoassay showed a wide linear range (2.0-1000 pg mL-1) and a high sensitivity with a limit of detection (LOD) as low as 0.91 pg mL-1 (0.04 pM) without using any extrinsic Raman label. UV-Vis spectroscopy was employed as a conventional method for IL-6 detection based on observation of any change in the position of localized surface plasmon resonance (LSPR) band of AuNPs-antibody conjugates with LOD of 10 ng mL-1.
Collapse
Affiliation(s)
- Marjan Majdinasab
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Aicha Azziz
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Qiqian Liu
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Verónica Mora-Sanz
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain
| | - Nerea Briz
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain
| | - Mathieu Edely
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Marc Lamy de la Chapellea
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
4
|
Beeram R, Vepa KR, Soma VR. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. BIOSENSORS 2023; 13:328. [PMID: 36979540 PMCID: PMC10046859 DOI: 10.3390/bios13030328] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.
Collapse
Affiliation(s)
| | | | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia—Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
5
|
Liu Y, Wang Z, Miao K, Zhang X, Li W, Zhao P, Sun P, Zheng T, Zhang X, Chen C. Research progress on near-infrared long persistent phosphor materials in biomedical applications. NANOSCALE ADVANCES 2022; 4:4972-4996. [PMID: 36504755 PMCID: PMC9680941 DOI: 10.1039/d2na00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
After excitation is stopped, long persistent phosphor materials (LPPs) can emit light for a long time. The most important feature is that it allows the separation of excitation and emission in time. Therefore, it plays a vital role in various fields such as data storage, information technology, and biomedicine. Owing to the unique mechanism of storage and luminescence, LPPs can avoid the interference of sample autofluorescence, as well as show strong tissue penetration ability, good afterglow performance, and rich spectral information in the near-infrared (NIR) region, which provides a broad prospect for the application of NIR LPPs in the field of biomedicine. In recent years, the development and applications in biomedical fields have been advanced significantly, such as biological imaging, sensing detection, and surgical guidance. In this review, we focus on the synthesis methods and luminescence mechanisms of different types of NIR LPPs, as well as their applications in bioimaging, biosensing detection, and cancer treatment in the field of biomedicine. Finally, future prospects and challenges of NIR LPPs in biomedical applications are also discussed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Zengxue Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Kun Miao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xundi Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Wei Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Pan Zhao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Peng Sun
- Innovative of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Tingting Zheng
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xiuyun Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|