2
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
4
|
Kadja GTM, Himma NF, Prasetya N, Sumboja A, Bazant MZ, Wenten IG. Advances and challenges in the development of nanosheet membranes. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The development of highly efficient separation membranes utilizing emerging materials with controllable pore size and minimized thickness could greatly enhance the broad applications of membrane-based technologies. Having this perspective, many studies on the incorporation of nanosheets in membrane fabrication have been conducted, and strong interest in this area has grown over the past decade. This article reviews the development of nanosheet membranes focusing on two-dimensional materials as a continuous phase, due to their promising properties, such as atomic or nanoscale thickness and large lateral dimensions, to achieve improved performance compared to their discontinuous counterparts. Material characteristics and strategies to process nanosheet materials into separation membranes are reviewed, followed by discussions on the membrane performances in diverse applications. The review concludes with a discussion of remaining challenges and future outlook for nanosheet membrane technologies.
Collapse
Affiliation(s)
- Grandprix T. M. Kadja
- Division of Inorganic and Physical Chemistry , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung , 40132 , Indonesia
- Center for Catalytic and Reaction Engineering , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung , 40132 , Indonesia
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
| | - Nurul F. Himma
- Department of Chemical Engineering , Universitas Brawijaya , Jl. Mayjen Haryono 167 , Malang 65145 , Indonesia
| | - Nicholaus Prasetya
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Barrer Centre, Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group , Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung , Jl. Ganesha 10 , Bandung 40132 , Indonesia
- National Centre for Sustainable Transportation Technology , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
| | - Martin Z. Bazant
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA
- Department of Mathematics , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA
| | - I G. Wenten
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Institut Teknologi Bandung , Jalan Ganesha no. 10 , Bandung 40132 , Indonesia
| |
Collapse
|
5
|
Bakshi A, Bustamante H, Sui X, Joshi R. Structure Dependent Water Transport in Membranes Based on Two-Dimensional Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aastha Bakshi
- Department of Metallurgical and Materials Engineering, Punjab Engineering College (Deemed to Be University), Chandigarh 160012, India
- SMaRT Centre, School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | - Xiao Sui
- SMaRT Centre, School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rakesh Joshi
- SMaRT Centre, School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|