1
|
Mei G, Zhai Y, Guo W, Liu D, Fang Z, Xie G, Duan Z, Lang X, Zhu Z, Lu X, Tang J. Highly Active and Stable Cu-Cd Bimetallic Oxides for Enhanced Electrochemical CO 2 Reduction. Chemistry 2025; 31:e202403261. [PMID: 39542841 DOI: 10.1002/chem.202403261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2) can produce value-added chemicals such as carbon monoxide (CO) and multicarbon (C2+). However, the complex reaction pathways of CO2 electro-reduction reaction (CO2RR) greatly limit the product selectivity and conversion efficiency. Herein, the Cu-Cd bimetallic oxides catalyst was designed and applied for the CO2RR. The optimized 4.73 %Cd-CuO exhibits remarkable electrocatalytic CO2RR activity for selective CO production in H-cell using 0.5 M 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6)/MeCN as electrolyte. The Faradaic efficiency of CO (FE(CO)) can be maintained above 90 % over a wide potential range of -2.0 to -2.4 V vs. Ag/Ag+. Particularly, the catalyst achieves an impressive FE(CO) of 96.3 % with a current density of 60.7 mA cm-2 at -2.2 V vs. Ag/Ag+. Furthermore, scaling up the 4.73 %Cd-CuO catalyst into a flow cell can reach 56.64 % FE of C2+ products (ethylene, ethanol and n-propanol) with a current density as high as 600 mA cm-2 steadily. The excellent CO2RR performance of the as-synthesized 4.73 %Cd-CuO can be mainly attributed to the introduction of CdO to improve the ability of CuO to activate CO2, the electronic interactions between Cu and Cd can boost the activation and conversion the key intermediates of CO2RR and ensure the continuous stability of the 4.73 %Cd-CuO in electrolysis process.
Collapse
Affiliation(s)
- Guoliang Mei
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanling Zhai
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Weiwei Guo
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Doudou Liu
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zijian Fang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guixian Xie
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zongxia Duan
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xianzhen Lang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhijun Zhu
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaoquan Lu
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
2
|
Jia X, Qi K, Yang J, Fan Z, Hua Z, Wan X, Zhao Y, Mao Y, Yang D. Cd/Cd(OH) 2 Nanosheets Enhancing the Electrocatalytic Activity of CO 2 Reduction to CO. Chemistry 2023; 29:e202302613. [PMID: 37837322 DOI: 10.1002/chem.202302613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Electric-driven conversion of carbon dioxide (CO2 ) to carbon monoxide (CO) under mild reaction conditions offers a promising approach to mitigate the greenhouse effect and the energy crisis. Surface engineering is believed to be one of the prospective methods for enhancing the electrocatalytic activity of CO2 reduction. Herein, hydroxyl (OH) groups were successfully introduced to cadmium nanosheets to form cadmium and cadmium hydroxide nanocomposites (i. e. Cd/Cd(OH)2 nanosheets) via a facile two-step method. The as-prepared Cd/Cd(OH)2 /CP (CP indicates carbon paper) electrode displays excellent electrocatalytic activity for CO2 reduction to produce CO. The Faradaic efficiency of CO reaches 98.3 % and the current density achieves 23.8 mA cm-2 at -2.0 V vs. Ag/Ag+ in a CO2 -saturated 30 wt% 1-butyl-3-methylimidazole hexafluorophosphate ([Bmim]PF6 )-65 wt% acetonitrile (CH3 CN)-5 wt% water (H2 O) electrolyte. And the CO partial current density can reach up to 71.6 mA cm-2 with the CO Faradaic efficiency of more than 85 % at -2.3 V vs. Ag/Ag+ , which stands out against Cd/CP, Cd(OH)2 /CP, and Cd/CdO/CP electrodes. The excellent electrocatalytic performance of the Cd/Cd(OH)2 /CP electrode can be attributed to its unique structural properties, suitable OH groups, perfect interaction with electrolyte, abundant active sites and fast electron transfer rate.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kongsheng Qi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jie Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zixi Fan
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou, Henan, 450053, China
| | - Zhixin Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoqi Wan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuhua Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yidan Mao
- Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou, Henan, 450053, China
| | - Dexin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
3
|
Zhou P, Lv J, Huang X, Lu Y, Wang G. Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Badawy IM, Ismail AM, Khedr GE, Taha MM, Allam NK. Selective electrochemical reduction of CO 2 on compositionally variant bimetallic Cu-Zn electrocatalysts derived from scrap brass alloys. Sci Rep 2022; 12:13456. [PMID: 35931804 PMCID: PMC9355942 DOI: 10.1038/s41598-022-17317-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
The electrocatalytic reduction of carbon dioxide (CO2RR) into value-added fuels is a promising initiative to overcome the adverse effects of CO2 on climate change. Most electrocatalysts studied, however, overlook the harmful mining practices used to extract these catalysts in pursuit of achieving high-performance. Repurposing scrap metals to use as alternative electrocatalysts would thus hold high privilege even at the compromise of high performance. In this work, we demonstrated the repurposing of scrap brass alloys with different Zn content for the conversion of CO2 into carbon monoxide and formate. The scrap alloys were activated towards CO2RR via simple annealing in air and made more selective towards CO production through galvanic replacement with Ag. Upon galvanic replacement with Ag, the scrap brass-based electrocatalysts showed enhanced current density for CO production with better selectivity towards the formation of CO. The density functional theory (DFT) calculations were used to elucidate the potential mechanism and selectivity of the scrap brass catalysts towards CO2RR. The d-band center in the different brass samples with different Zn content was elucidated.
Collapse
Affiliation(s)
- Ibrahim M Badawy
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ahmed Mohsen Ismail
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ghada E Khedr
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.,Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Manar M Taha
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
5
|
Hu X, Sun J, Zheng W, Zheng S, Xie Y, Gao X, Yang B, Li Z, Lei L, Hou Y. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|