1
|
Chen W, Zuo J, Sang K, Qian G, Zhang J, Chen D, Zhou X, Yuan W, Duan X. Leveraging the Proximity and Distribution of Cu-Cs Sites for Direct Conversion of Methanol to Esters/Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202314288. [PMID: 37988201 DOI: 10.1002/anie.202314288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Methanol serves as a versatile building-block for various commodity chemicals, and the development of industrially promising strategies for its conversion remains the ultimate goal in methanol chemistry. In this study, we design a dual Cu-Cs catalytic system that enables a one-step direct conversion of methanol and methyl acetate/ethanol into high value-added esters/aldehydes, with customized chain length and saturation by leveraging the proximity and distribution of Cu-Cs sites. Cu-Cs at a millimeter-scale intimacy triggers methanol dehydrogenation and condensation, involving proton transfer, aldol formation, and aldol condensation, to obtain unsaturated esters and aldehydes with selectivities of 76.3 % and 31.1 %, respectively. Cu-Cs at a micrometer-scale intimacy significantly promotes mass transfer of intermediates across catalyst interfaces and their subsequent hydrogenation to saturated esters and aldehydes with selectivities of 67.6 % and 93.1 %, respectively. Conversely, Cu-Cs at a nanometer-scale intimacy alters reaction pathway with a similar energy barrier for the rate-determining step, but blocks the acidic-basic sites and diverts the reaction to byproducts. More importantly, an unprecedented quadruple tandem catalytic production of methyl methacrylate (MMA) is achieved by further tailoring Cu and Cs distribution across the reaction bed in the configuration of Cu-Cs||Cs, outperforming the existing industrial processes and saving at least 15 % of production costs.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ji Zuo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Efficient and Stable O-Methylation of Catechol with Dimethyl Carbonate over Aluminophosphate Catalysts. Catalysts 2023. [DOI: 10.3390/catal13010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The O-methylation of catechol is an effective method for the industrial production of guaiacol used as an important chemical. However, the low catechol conversion and poor catalyst stability are the most critical issues that need to be addressed. Herein, the O-methylation of catechol with dimethyl carbonate was investigated over aluminophosphate (APO) catalysts, using a continuous-flow system to produce guaiacol. APO catalysts were synthesized with varying P/Al molar ratios and calcination temperatures to study their effects on catalytic performance for the reaction. The physico-chemical properties of the APO catalysts were thoroughly investigated using XRD, NH3-TPD, CO2-TPD, FTIR, and Py-FTIR. The P/Al molar ratio and catalyst calcination temperature significantly influenced the structure and texture, as well as the surface acid-base properties of APO. Both the medium acid and medium base sites were observed over APO catalysts, and the Lewis acid sites acted as the main active sites. The APO (P/Al = 0.7) exhibited the highest catalytic activity and excellent stability, due to the suitable medium acid-base pairs.
Collapse
|
3
|
Wu Z, Sun T, Li Z, Li C. Si-Modified Cs/Al 2O 3 for Aldol Condensation of Methyl Acetate with Formaldehyde to Methyl Acrylate by Chemical Liquid Deposition. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhenyu Wu
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Taolue Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Zengxi Li
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province256606, People’s Republic of China
| | - Chunshan Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
4
|
Enhanced phosphate removal by coral reef-like flocs: Coagulation performance and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|