1
|
Choi AJ, Hefley BS, Strobel HA, Moss SM, Hoying JB, Nicholas SE, Moshayedi S, Kim J, Karamichos D. Fabrication of a 3D Corneal Model Using Collagen Bioink and Human Corneal Stromal Cells. J Funct Biomater 2025; 16:118. [PMID: 40278226 PMCID: PMC12028034 DOI: 10.3390/jfb16040118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Corneal transplantation remains a critical treatment option for individuals with corneal disorders, but it faces challenges such as rejection, high associated medical costs, and donor scarcity. A promising alternative for corneal replacement involves fabricating artificial cornea from a patient's own cells. Our study aimed to leverage bioprinting to develop a corneal model using human corneal stromal cells embedded in a collagen-based bioink. We generated both cellular and acellular collagen I (COL I) constructs. Cellular constructs were cultured for up to 4 weeks, and gene expression analysis was performed to assess extracellular matrix (ECM) remodeling and fibrotic markers. Our results demonstrated a significant decrease in the expression of COL I, collagen III (COL III), vimentin (VIM), and vinculin (VCL), indicating a dynamic remodeling process towards a more physiologically relevant corneal ECM. Overall, our study provides a foundational framework for developing customizable, corneal replacements using bioprinting technology. Further research is necessary to optimize the bioink composition and evaluate the functional and biomechanical properties of these bioengineered corneas.
Collapse
Affiliation(s)
- Alexander J. Choi
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Brenna S. Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Hannah A. Strobel
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - Sarah M. Moss
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - James B. Hoying
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Shadi Moshayedi
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Jayoung Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Aziza Y, Imai K, Itoi M, Yoshioka H, Komai S, Kitazawa K, Sitompul R, Ueta M, Fukuoka H, Inatomi T, Kinoshita S, Sotozono C. Strategic combination of cultivated oral mucosal epithelial transplantation and postoperative limbal-rigid contact lens-wear for end-stage ocular surface disease: a retrospective cohort study. Br J Ophthalmol 2024; 108:1177-1183. [PMID: 37918892 PMCID: PMC11287622 DOI: 10.1136/bjo-2023-323617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE To provide the long-term outcome of patients with end-stage severe ocular surface disease (OSD) consecutively treated with cultivated oral mucosal epithelial transplantation (COMET) followed by limbal-rigid contact lens (CL)-wear therapy. DESIGN Retrospective cohort. METHODS In 23 eyes of 18 patients with severe OSD who underwent COMET surgery between 2002 and 2019 and who were followed with limbal-rigid CL-wear therapy for at least 1 year postoperative, patient demographics, best-corrected visual acuity (BCVA, logMAR), Ocular Surface Grading Scores (OSGS), surgical indication and adverse events were reviewed. Primary and secondary outcomes were BCVA and OSGS changes at baseline and final examination, respectively. RESULTS This study involved 16 patients with Stevens-Johnson syndrome and 2 patients with mucous membrane pemphigoid (mean age: 59±15 years). The indications for COMET were as follows: corneal reconstruction for vision improvement (10 eyes (43.5%)), corneal reconstruction for persistent epithelial defect (4 eyes (17.4%)) and conjunctival (fornix) reconstruction for symblepharon release (9 eyes (39.1%)). The mean duration of CL-wear postsurgery was 6.4±3.9 years (range: 1.4 to 13.3 years). The mean BCVA at baseline and at final follow-up was logMAR 1.9±0.5 and 1.3±0.7, respectively (p<0.05). Compared with those at baseline, the OSGSs for symblepharon and upper and lower fornix shortening showed significant improvement at each follow-up time point post treatment initiation. No serious intraoperative or postoperative adverse events were observed. CONCLUSION In patients afflicted with severe OSD, COMET combined with limbal-rigid CL-wear therapy postsurgery was found effective for vision improvement and ocular surface stabilisation.
Collapse
Affiliation(s)
- Yulia Aziza
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Kojiro Imai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motohiro Itoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hokoru Yoshioka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seitaro Komai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ratna Sitompul
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Fukuoka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsutomu Inatomi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Ophthalmology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Kitao M, Hayashi R, Nomi K, Kobayashi R, Katayama T, Takayanagi H, Oguchi A, Murakawa Y, Nishida K. Identification of BST2 as a conjunctival epithelial stem/progenitor cell marker. iScience 2023; 26:107016. [PMID: 37389178 PMCID: PMC10300367 DOI: 10.1016/j.isci.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
The conjunctival epithelium consists of conjunctival epithelial cells and goblet cells derived from conjunctival epithelial stem/progenitor cells. However, the source of these cells is not well known because no specific markers for conjunctival epithelial stem/progenitor cells have been discovered. Therefore, to identify conjunctival epithelial stem/progenitor cell markers, we performed single-cell RNA sequencing of a conjunctival epithelial cell population derived from human-induced pluripotent stem cells (hiPSCs). The following conjunctival epithelial markers were identified: BST2, SLC2A3, AGR2, TMEM54, OLR1, and TRIM29. Notably, BST2 was strongly positive in the basal conjunctival epithelium, which is thought to be rich in stem/progenitor cells. Moreover, BST2 was able to sort conjunctival epithelial stem/progenitor cells from hiPSC-derived ocular surface epithelial cell populations. BST2-positive cells were highly proliferative and capable of successfully generating conjunctival epithelial sheets containing goblet cells. In conclusion, BST2 has been identified as a specific marker of conjunctival epithelial stem/progenitor cells.
Collapse
Affiliation(s)
- Masahiro Kitao
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kimihito Nomi
- Business Strategy Office, ROHTO Pharmaceutical, Osaka, Osaka 544-0012, Japan
| | - Reiko Kobayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomohiko Katayama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroshi Takayanagi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akiko Oguchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Huang R, Su C, Fang L, Lu J, Chen J, Ding Y. Dry eye syndrome: comprehensive etiologies and recent clinical trials. Int Ophthalmol 2022; 42:3253-3272. [PMID: 35678897 PMCID: PMC9178318 DOI: 10.1007/s10792-022-02320-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/18/2022] [Indexed: 12/07/2023]
Abstract
Dry eye syndrome (DES) is multifactorial and likely to be a cause of concern more so than ever given the rapid pace of modernization, which is directly associated with many of the extrinsic causative factors. Additionally, recent studies have also postulated novel etiologies that may provide the basis for alternative treatment methods clinically. Such insights are especially important given that current approaches to tackle DES remains suboptimal. This review will primarily cover a comprehensive list of causes that lead to DES, summarize all the upcoming and ongoing clinical trials that focuses on treating this disease as well as discuss future potential treatments that can improve inclusivity.
Collapse
Affiliation(s)
- Ruojing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Caiying Su
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Lvjie Fang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiaqi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Huangpu Avenue West 601, Tianhe District, Guangzhou, 510632, China.
| | - Yong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
5
|
MIC-1 Antlerogenic Stem Cells Homogenate from Cervus elaphus Accelerate Corneal Burn Reepithelization in Rabbits. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deer antler is the only mammalian organ that can fully grow back once lost from its pedicle. Antler regeneration is a stem cell-based process. Therefore, antlers probably offer the most pertinent model for studying organ regeneration in mammals. Evaluation of the effect of deer antler stem cells on the healing of superficial and deep rabbit corneal wounds was performed. Thirty-six New Zealeand White rabbits were used in this study in superficial and deep denaturation models, and corneal erosion was performed with n-heptanol placed on the cornea for 30 and NaOH for 90 s. Antler stem cells in drop formulation with hyaluronate was used. As a control, sodium hyaluronate in the superficial model and protein-free calf blood dialysate (Solcoseryl) in the deep model were administered. In superficial corneal damage, a reduction in the area of the damaged cornea was observed from day 3 of the experiment to an adequate level: 45% in the test group and 52% in the control group relative to the baseline damage (100%). Between days 3 and 7, on average, a smaller lesion area was observed in the group receiving antler stem cells. The use of antler stem cells has resulted in a marked improvement in cornea clarity. According to the 5-point scale of corneal opacity evaluation, where 1 is completely clear and 5 is completely opaque, the first statistically significant changes were observed after 4 weeks of treatment: 3.0 in the study group, 4.1 in the control with Solcoseryl, and 4.4 in the control group. After 9 weeks, these values were, 2.5, 3.8, and 4.1, respectively. The present preliminary study shows the promising results of antlerogenic stem cells of Cervus elaphus topically applied for the treatment of corneal injury. A deeper understanding of the developmental mechanisms involved in antler renewal can be useful for controlling regeneration cornea processes.
Collapse
|
6
|
Valdivia E, Bertolin M, Breda C, Carvalho Oliveira M, Salz AK, Hofmann N, Börgel M, Blasczyk R, Ferrari S, Figueiredo C. Genetic Modification of Limbal Stem Cells to Decrease Allogeneic Immune Responses. Front Immunol 2021; 12:747357. [PMID: 34956181 PMCID: PMC8696204 DOI: 10.3389/fimmu.2021.747357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Limbal stem cell (LSC) transplantation is the only efficient treatment for patients affected by LSC deficiency (LSCD). Allogeneic LSC transplantation is one of the most successful alternative for patients with bilateral LSCD. Nevertheless, the high variability of the human leukocyte antigens (HLA) remains a relevant obstacle to long-term allogeneic graft survival. This study characterized the immunologic properties of LSCs and proposed a genetic engineering strategy to reduce the immunogenicity of LSCs and of their derivatives. Hence, LSC HLA expression was silenced using lentiviral vectors encoding for short hairpin (sh) RNAs targeting β2-microglobulin (β2M) or class II major histocompatibility complex transactivator (CIITA) to silence HLA class I and II respectively. Beside the constitutive expression of HLA class I, LSCs showed the capability to upregulate HLA class II expression under inflammatory conditions. Furthermore, LSCs demonstrated the capability to induce T-cell mediated immune responses. LSCs phenotypical and functional characteristics are not disturbed after genetic modification. However, HLA silenced LSC showed to prevent T cell activation, proliferation and cytotoxicity in comparison to fully HLA-expressing LSCs. Additionally; HLA-silenced LSCs were protected against antibody-mediated cellular-dependent cytotoxicity. Our data is a proof-of-concept of the feasibility to generate low immunogenic human LSCs without affecting their typical features. The use of low immunogenic LSCs may support for long-term survival of LSCs and their derivatives after allogeneic transplantation.
Collapse
Affiliation(s)
- Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | - Claudia Breda
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Nicola Hofmann
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Martin Börgel
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover, Germany
| | | | | |
Collapse
|
7
|
Jones L, Hui A, Phan CM, Read ML, Azar D, Buch J, Ciolino JB, Naroo SA, Pall B, Romond K, Sankaridurg P, Schnider CM, Terry L, Willcox M. CLEAR - Contact lens technologies of the future. Cont Lens Anterior Eye 2021; 44:398-430. [PMID: 33775384 DOI: 10.1016/j.clae.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Contact lenses in the future will likely have functions other than correction of refractive error. Lenses designed to control the development of myopia are already commercially available. Contact lenses as drug delivery devices and powered through advancements in nanotechnology will open up further opportunities for unique uses of contact lenses. This review examines the use, or potential use, of contact lenses aside from their role to correct refractive error. Contact lenses can be used to detect systemic and ocular surface diseases, treat and manage various ocular conditions and as devices that can correct presbyopia, control the development of myopia or be used for augmented vision. There is also discussion of new developments in contact lens packaging and storage cases. The use of contact lenses as devices to detect systemic disease has mostly focussed on detecting changes to glucose levels in tears for monitoring diabetic control. Glucose can be detected using changes in colour, fluorescence or generation of electric signals by embedded sensors such as boronic acid, concanavalin A or glucose oxidase. Contact lenses that have gained regulatory approval can measure changes in intraocular pressure to monitor glaucoma by measuring small changes in corneal shape. Challenges include integrating sensors into contact lenses and detecting the signals generated. Various techniques are used to optimise uptake and release of the drugs to the ocular surface to treat diseases such as dry eye, glaucoma, infection and allergy. Contact lenses that either mechanically or electronically change their shape are being investigated for the management of presbyopia. Contact lenses that slow the development of myopia are based upon incorporating concentric rings of plus power, peripheral optical zone(s) with add power or non-monotonic variations in power. Various forms of these lenses have shown a reduction in myopia in clinical trials and are available in various markets.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| | - Alex Hui
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Michael L Read
- Eurolens Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dimitri Azar
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA; Verily Life Sciences, San Francisco, CA, USA
| | - John Buch
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Joseph B Ciolino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shehzad A Naroo
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Brian Pall
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Kathleen Romond
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| | - Padmaja Sankaridurg
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia; Brien Holden Vision Institute, Sydney, Australia
| | | | - Louise Terry
- School of Optometry and Vision Sciences, Cardiff University, UK
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Adil MT, Henry JJ. Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems. Genesis 2021; 59:e23411. [PMID: 33576188 DOI: 10.1002/dvg.23411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Animal models have contributed greatly to our understanding of human diseases. Here, we focus on cornea epithelial stem cell (CESC) deficiency (commonly called limbal stem cell deficiency, LSCD). Corneal development, homeostasis and wound healing are supported by specific stem cells, that include the CESCs. Damage to or loss of these cells results in blindness and other debilitating ocular conditions. Here we describe the contributions from several vertebrate models toward understanding CESCs and LSCD treatments. These include both mammalian models, as well as two aquatic models, Zebrafish and the amphibian, Xenopus. Pioneering developments have been made using stem cell transplants to restore normal vision in patients with LSCD, but questions still remain about the basic biology of CESCs, including their precise cell lineages and behavior in the cornea. We describe various cell lineage tracing studies to follow their patterns of division, and the fates of their progeny during development, homeostasis, and wound healing. In addition, we present some preliminary results using the Xenopus model system. Ultimately, a more thorough understanding of these cornea cells will advance our knowledge of stem cell biology and lead to better cornea disease therapeutics.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Ashworth S, Harrington J, Hammond GM, Bains KK, Koudouna E, Hayes AJ, Ralphs JR, Regini JW, Young RD, Hayashi R, Nishida K, Hughes CE, Quantock AJ. Chondroitin Sulfate as a Potential Modulator of the Stem Cell Niche in Cornea. Front Cell Dev Biol 2021; 8:567358. [PMID: 33511110 PMCID: PMC7835413 DOI: 10.3389/fcell.2020.567358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate (CS) is an important component of the extracellular matrix in multiple biological tissues. In cornea, the CS glycosaminoglycan (GAG) exists in hybrid form, whereby some of the repeating disaccharides are dermatan sulfate (DS). These CS/DS GAGs in cornea, through their presence on the proteoglycans, decorin and biglycan, help control collagen fibrillogenesis and organization. CS also acts as a regulatory ligand for a spectrum of signaling molecules, including morphogens, cytokines, chemokines, and enzymes during corneal growth and development. There is a growing body of evidence that precise expression of CS or CS/DS with specific sulfation motifs helps define the local extracellular compartment that contributes to maintenance of the stem cell phenotype. Indeed, recent evidence shows that CS sulfation motifs recognized by antibodies 4C3, 7D4, and 3B3 identify stem cell populations and their niches, along with activated progenitor cells and transitional areas of tissue development in the fetal human elbow. Various sulfation motifs identified by some CS antibodies are also specifically located in the limbal region at the edge of the mature cornea, which is widely accepted to represent the corneal epithelial stem cell niche. Emerging data also implicate developmental changes in the distribution of CS during corneal morphogenesis. This article will reflect upon the potential roles of CS and CS/DS in maintenance of the stem cell niche in cornea, and will contemplate the possible involvement of CS in the generation of eye-like tissues from human iPS (induced pluripotent stem) cells.
Collapse
Affiliation(s)
- Sean Ashworth
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jodie Harrington
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.,Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Greg M Hammond
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kiranjit K Bains
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Elena Koudouna
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony J Hayes
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - James R Ralphs
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Justyn W Regini
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert D Young
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Clare E Hughes
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Nosrati H, Alizadeh Z, Nosrati A, Ashrafi-Dehkordi K, Banitalebi-Dehkordi M, Sanami S, Khodaei M. Stem cell-based therapeutic strategies for corneal epithelium regeneration. Tissue Cell 2020; 68:101470. [PMID: 33248403 DOI: 10.1016/j.tice.2020.101470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Any significant loss of vision or blindness caused by corneal damages is referred to as corneal blindness. Corneal blindness is the fourth most common cause of blindness worldwide, representing more than 5% of the total blind population. Currently, corneal transplantation is used to treat many corneal diseases. In some cases, implantation of artificial cornea (keratoprosthesis) is suggested after a patient has had a donor corneal transplant failure. The shortage of donors and the side effects of keratoprosthesis are limiting these approaches. Recently, researchers have been actively pursuing new approaches for corneal regeneration because of these limitations. Nowadays, tissue engineering of different corneal layers (epithelium, stroma, endothelium, or full thickness tissue) is a promising approach that has attracted a great deal of interest from researchers and focuses on regenerative strategies using different cell sources and biomaterials. Various sources of corneal and non-corneal stem cells have shown significant advantages for corneal epithelium regeneration applications. Pluripotent stem cells (embryonic stem cells and iPS cells), epithelial stem cells (derived from oral mucus, amniotic membrane, epidermis and hair follicle), mesenchymal stem cells (bone marrow, adipose-derived, amniotic membrane, placenta, umbilical cord), and neural crest origin stem cells (dental pulp stem cells) are the most promising sources in this regard. These cells could also be used in combination with natural or synthetic scaffolds to improve the efficacy of the therapeutic approach. As the ocular surface is exposed to external damage, the number of studies on regeneration of the corneal epithelium is rising. In this paper, we reviewed the stem cell-based strategies for corneal epithelium regeneration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nosrati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Korosh Ashrafi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| |
Collapse
|
11
|
Gouveia RM, Connon CJ. Biomechanical Modulation Therapy-A Stem Cell Therapy Without Stem Cells for the Treatment of Severe Ocular Burns. Transl Vis Sci Technol 2020; 9:5. [PMID: 33240564 PMCID: PMC7671857 DOI: 10.1167/tvst.9.12.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ocular injuries caused by chemical and thermal burns are often unmanageable and frequently result in disfigurement, corneal haze/opacification, and vision loss. Currently, a considerable number of surgical and pharmacological approaches are available to treat such injuries at either an acute or a chronic stage. However, these existing interventions are mainly directed at (and limited to) suppressing corneal inflammation and neovascularization while promoting re-epithelialization. Reconstruction of the ocular surface represents a suitable but last-option recourse in cases where epithelial healing is severely impaired, such as due to limbal stem cell deficiency. In this concise review, we discuss how biomechanical modulation therapy (BMT) may represent a more effective approach to promoting the regeneration of ocular tissues affected by burn injuries via restoration of the limbal stem cell niche. Specifically, the scientific basis supporting this new therapeutic modality is described, along with our growing understanding of the role that tissue biomechanics plays in stem cell fate and function. The potential impact of BMT as a future treatment option for the management of injuries affecting tissue compliance is also further discussed.
Collapse
Affiliation(s)
- Ricardo M Gouveia
- Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Che J Connon
- Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Baba K, Sasaki K, Morita M, Tanaka T, Teranishi Y, Ogasawara T, Oie Y, Kusumi I, Inoie M, Hata KI, Quantock AJ, Kino-Oka M, Nishida K. Cell jamming, stratification and p63 expression in cultivated human corneal epithelial cell sheets. Sci Rep 2020; 10:9282. [PMID: 32518325 PMCID: PMC7283219 DOI: 10.1038/s41598-020-64394-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023] Open
Abstract
Corneal limbal epithelial stem cell transplantation using cultivated human corneal epithelial cell sheets has been used successfully to treat limbal stem cell deficiencies. Here we report an investigation into the quality of cultivated human corneal epithelial cell sheets using time-lapse imaging of the cell culture process every 20 minutes over 14 days to ascertain the level of cell jamming, a phenomenon in which cells become smaller, more rounded and less actively expansive. In parallel, we also assessed the expression of p63, an important corneal epithelial stem cell marker. The occurrence of cell jamming was variable and transient, but was invariably associated with a thickening and stratification of the cell sheet. p63 was present in all expanding cell sheets in the first 9 days of culture, but it's presence did not always correlate with stratification of the cell sheet. Nor did p63 expression necessarily persist in stratified cell sheets. An assessment of cell jamming, therefore, can shed significant light on the quality and regenerative potential of cultivated human corneal epithelial cell sheets.
Collapse
Affiliation(s)
- Koichi Baba
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kei Sasaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mio Morita
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Tanaka
- Japan Tissue Engineering Co., Ltd, 6-209-1 Miyakitadori, Gamagori, Aichi, 443-0022, Japan
| | - Yosuke Teranishi
- Japan Tissue Engineering Co., Ltd, 6-209-1 Miyakitadori, Gamagori, Aichi, 443-0022, Japan
| | - Takahiro Ogasawara
- Japan Tissue Engineering Co., Ltd, 6-209-1 Miyakitadori, Gamagori, Aichi, 443-0022, Japan
| | - Yoshinori Oie
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Izumi Kusumi
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masukazu Inoie
- Japan Tissue Engineering Co., Ltd, 6-209-1 Miyakitadori, Gamagori, Aichi, 443-0022, Japan
| | - Ken-Ichiro Hata
- Japan Tissue Engineering Co., Ltd, 6-209-1 Miyakitadori, Gamagori, Aichi, 443-0022, Japan
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Itoi M, Ueta M, Ogino K, Sumi E, Imai K, Teramukai S, Kinoshita S, Sotozono C. Clinical trial to evaluate the therapeutic benefits of limbal-supported contact lens wear for ocular sequelae due to Stevens-Johnson syndrome/toxic epidermal necrolysis. Cont Lens Anterior Eye 2020; 43:535-542. [PMID: 32513522 DOI: 10.1016/j.clae.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To analyze the therapeutic benefits of limbal-supported contact lens (CL) wear in patients with ocular sequelae due to Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN). METHODS This interventional study enrolled 10 chronic SJS/TEN eyes with a spectacle best-corrected visual acuity (BCVA) of between 0.01 and 0.7 that were fitted with a limbal-supported CL. At baseline and at after 3-months CL use, CL-wear BCVA and the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) scores were measured, and then compared. Incidence rates and severities of adverse events were also analyzed. RESULTS At after 3-months CL use, BCVA with the fitted CL significantly improved compared to that with spectacle correction at baseline (LogMAR: 0.76-0.15) (P = 0.0039), all NEI VFQ-25 scores improved, however, only in ocular pain and mental health showed statistically significant improvement (P = 0.0078 and 0.0039). No serious adverse events were observed during the follow-up. CONCLUSION Wearing of the limbal-supported CL improved vision compared to spectacles and reduced ocular pain in patients with ocular sequelae due to SJS/TEN.
Collapse
Affiliation(s)
- Motohiro Itoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramach-dori, Kamigyo-ku, Kyoto 602-0841, Japan.
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramach-dori, Kamigyo-ku, Kyoto 602-0841, Japan.
| | - Ken Ogino
- Japanese Red Cross Wakayama Medical Center, Wakayama, Japan.
| | - Eriko Sumi
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan.
| | - Kojiro Imai
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Satoshi Teramukai
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramach-dori, Kamigyo-ku, Kyoto 602-0841, Japan.
| |
Collapse
|
14
|
Samoila O, Gocan D. Clinical Outcomes From Cultivated Allogenic Stem Cells vs. Oral Mucosa Epithelial Transplants in Total Bilateral Stem Cells Deficiency. Front Med (Lausanne) 2020; 7:43. [PMID: 32133365 PMCID: PMC7040221 DOI: 10.3389/fmed.2020.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/29/2020] [Indexed: 01/07/2023] Open
Abstract
Total bilateral limbal stem cell deficiency results from various pathologies, from burns (either chemical or physical) to Sjogren Syndrome, aniridia or ocular cicatricial pemphigoid. After the loss of stem cells, normal corneal epithelium is replaced by a more opaque and vascularized conjunctival epithelium, causing loss of vision. After 1997, cultivation techniques for limbal stem cells became possible. In parallel, cultivation techniques for oral mucosa epithelial cells were also available. The aim of our review was to summarize the clinical outcomes following allogenic cultured limbal stem cell transplant (allogenic CLET), and on the other hand, oral mucosa derived epithelium transplant (cultivated oral mucosa epithelial transplant-COMET or cultivated autologous oral mucosal epithelial cell sheet-CAOMECS), in the case of total bilateral limbal stem cell loss. Thirty studies matching the inclusion criteria were found. The clinical improvement in both methods was reported similar, with percentages higher than 50% of the treated cases. However, the comparison between studies was difficult to achieve due to the lack of a universal and objective grading tool for assessing post-operative results. The definition of clinical improvement was problematic, because success was defined differently, depending on the study. Moreover, some of the studies followed both autologous and allogenic CLET, but described the results together, for both procedures, and therefore it was impossible to analyze them separately. COMET presented some advantages compared to CLET. By using autologous cells, there was no risk of immune activation and no immunosuppression was needed. COMET, however, might be associated with increased risk of persistent epithelial defects and graft failure, compared with allogenic CLET.
Collapse
Affiliation(s)
- Ovidiu Samoila
- Department of Ophthalmology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|