1
|
Mirea CS, Schenker M, Petre-Mandache B, Cucu MG, Camen GC, Vîlcea ID, Albu BC, Obleagă CV, Ciorbagiu MC, Streață I, Pleșea RM, Riza AL, Burada F. GAS5 rs145204276 Ins/Del Polymorphism Is Associated with CRC Susceptibility in a Romanian Population. Int J Mol Sci 2025; 26:3078. [PMID: 40243746 PMCID: PMC11988689 DOI: 10.3390/ijms26073078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality, influenced by both genetic and epigenetic factors. Long non-coding RNAs (lncRNAs) such as GAS5 and CASC8 have been implicated in cancer susceptibility. This study aimed to assess the association of GAS5 rs145204276 ins/del and CASC8 rs10505477 A>G polymorphisms with CRC risk in a Romanian population. A case-control study was conducted, including 156 CRC patients and 195 healthy controls. Genotyping for GAS5 and CASC8 polymorphisms was performed using real-time PCR, and the association with CRC risk was evaluated using logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). The carriers of GAS5 rs145204276 del allele was significantly associated with increased CRC risk (OR: 2.13, 95% CI: 1.24-3.63, p = 0.005) in a dominant model. In the subgroup analysis, the association of GAS5 rs145204276 ins/del polymorphism was restricted to distal colon cancer cases (OR: 2.98, 95% CI: 1.57-5.66, p = 0.001), advanced tumor stages (III + IV) (OR: 2.54, 95% CI: 1.31-4.91, p = 0.007), and poorly differentiated tumors (G3) (OR: 3.98, 95% CI: 1.49-10.59, p = 0.009). No significant correlation was found for the CASC8 rs10505477 A>G polymorphism. GAS5 rs145204276 polymorphism may influence CRC susceptibility, particularly in distal tumors and advanced stages. However, CASC8 rs10505477 polymorphism showed no association with CRC risk in this Romanian cohort.
Collapse
Affiliation(s)
- Cecil Sorin Mirea
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.S.M.); (I.D.V.); (C.V.O.); (M.C.C.)
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bianca Petre-Mandache
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihai-Gabriel Cucu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Georgiana-Cristiana Camen
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ionică Daniel Vîlcea
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.S.M.); (I.D.V.); (C.V.O.); (M.C.C.)
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
| | - Bogdan Cristian Albu
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cosmin Vasile Obleagă
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.S.M.); (I.D.V.); (C.V.O.); (M.C.C.)
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
| | - Mihai Călin Ciorbagiu
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.S.M.); (I.D.V.); (C.V.O.); (M.C.C.)
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Răzvan Mihail Pleșea
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Florin Burada
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| |
Collapse
|
2
|
Hsu CY, Rab SO, Zwamel AH, Oghenemaro EF, Chandra M, Rajotiya S, Hjazi A, Prasad K, Atteri S, Chauhan AS. From diagnosis to therapy: The role of LncRNA GAS5 in combatting some cancers affecting women. Gene 2025; 941:149217. [PMID: 39756550 DOI: 10.1016/j.gene.2025.149217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Long non-coding RNAs (lncRNAs) are a collection of non-coding RNA molecules that consist of more than 200 nucleotides. In human malignancies, these lncRNAs exhibit abnormal expression patterns and play a significant role in either suppressing or promoting tumor growth. They achieve this by modulating various functions and mechanisms within cancer cells, including proliferation, invasion, metastasis, apoptosis, and resistance to different therapeutic approaches. The downregulation of long non-coding RNA growth arrest‑specific transcript 5 (GAS5) has been observed in multiple tumor types, indicating its role as a tumor suppressor in cancer. GAS5 exhibits interactions with various proteins, DNA, and microRNAs (miRNAs), leading to the upregulation of several mRNAs encoding suppressor proteins like PTEN. Consequently, this upregulation inhibits tumor growth. In this review, we have examined the existing literature concerning the expression of GAS5 and its diagnostic significance in female tissue-specific cancers, including breast, cervical, ovarian, and endometrial cancers. Additionally, we have explored its interactions with different miRNAs and its impact on cancer progression and resistance to therapy in these malignancies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics,Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Kdv Prasad
- Symbiosis Institute of Business Management, Hyderabad; Symbiosis International (Deemed University), Pune, India
| | - Shikha Atteri
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Thangavelu L, Moglad E, Gupta G, Menon SV, Gaur A, Sharma S, Kaur M, Chahar M, Sivaprasad GV, Deorari M. GAS5 lncRNA: A biomarker and therapeutic target in breast cancer. Pathol Res Pract 2024; 260:155424. [PMID: 38909406 DOI: 10.1016/j.prp.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is one of the most common causes of cancer-related mortality globally, and its aggressive phenotype results in poor treatment outcomes. Growth Arrest-Specific 5 long non-coding RNA has attracted considerable attention due to its pivotal function in apoptosis regulation and tumor aggressiveness in breast cancer. Gas5 enhances apoptosis by regulating apoptotic proteins, such as caspases and BCL2 family proteins, and the sensitivity of BCCs to chemotherapeutic agents. At the same time, low levels of GAS5 increased invasion, metastasis, and overall tumor aggressiveness. GAS5 also regulates EMT markers, critical for cancer metastasis, and influences tumor cell proliferation by regulating various signaling components. As a result, GAS5 can be restored to suppress tumor development as a possible therapeutic strategy, which might present promising prospects for a patient's treatment. Its activity levels might also be a crucial indicator and diagnostic parameter for prediction. This review highlights the significant role of GAS5 in modulating apoptosis and tumor aggressiveness in breast cancer, emphasizing its potential as a therapeutic target for breast cancer treatment and management.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
4
|
Hasona NA, Elsabahy M, Shaker OG, Zaki O, Ayeldeen G. The Implication of Growth Arrest-Specific 5 rs145204276 Polymorphism and Serum Expression of Sirtuin 1, Transforming Growth Factor-Beta, and microRNA-182 in Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549241227415. [PMID: 38322669 PMCID: PMC10846042 DOI: 10.1177/11795549241227415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
Background Breast cancer (BC) patients have a higher chance of survival if it is diagnosed at an early stage, which is essential for efficient treatment of the condition. The results of an elevated risk of cancer, including BC, previously associated with the ins/del polymorphism rs145204276 in the promoter region of growth arrest-specific 5 (GAS5) are still up for debate. Thus, this study aimed to appraise the frequency of the GAS5 rs145204276 variant with BC risk and demonstrate the potential impact of the sirtuin 1 (SIRT-1), transforming growth factor-beta (TGF-β), and microRNA-182 (miR-182) expression and their diagnostic value in BC. Methods Blood samples of 155 patients with BC and fibroadenoma and 80 healthy controls were analyzed for GAS5 rs145204276 single nucleotide polymorphism (SNP), SIRT-1, TGF-β, and miRNA-182 expression levels. Results Ins/ins genotype and ins allele frequencies for GAS5 rs145204276 were considerably higher in BC patients compared with controls. Patients with BC had significantly greater serum levels of TGF-β, miR-182, and SIRT-1 expression. Conclusions The SIRT-1, TGF-β, and miR-182 genes provide novel, noninvasive diagnostic biomarkers for BC.
Collapse
Affiliation(s)
- Nabil A Hasona
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Othman Zaki
- Department of Clinical Pathology, Faculty of Medicine, Damietta University, New Damietta, Egypt
| | - Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Eldash S, Sanad EF, Nada D, Hamdy NM. The Intergenic Type LncRNA (LINC RNA) Faces in Cancer with In Silico Scope and a Directed Lens to LINC00511: A Step toward ncRNA Precision. Noncoding RNA 2023; 9:58. [PMID: 37888204 PMCID: PMC10610215 DOI: 10.3390/ncrna9050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA, is one type of lncRNA, exerting various cellular activities, as does ncRNA, including the regulation of gene expression and chromatin remodeling. The abnormal expression of lincRNAs can induce or suppress carcinogenesis. MAIN BODY LincRNAs can regulate cancer progression through different mechanisms and are considered as potential drug targets. Genetic variations such as single nucleotide polymorphisms (SNPs) in lincRNAs may affect gene expression and messenger ribonucleic acid (mRNA) stability. SNPs in lincRNAs have been found to be associated with different types of cancer, as well. Specifically, LINC00511 has been known to promote the progression of multiple malignancies such as breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, and others, making it a promising cancer prognostic molecular marker. CONCLUSION LincRNAs have been proved to be associated with different cancer types through various pathways. Herein, we performed a comprehensive literature and in silico databases search listing lncRNAs, lincRNAs including LINC00511, lncRNAs' SNPs, as well as LINC00511 SNPs in different cancer types, focusing on their role in various cancer types and mechanism(s) of action.
Collapse
Affiliation(s)
- Shorouk Eldash
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Eman F. Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
6
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| |
Collapse
|
7
|
Lyu Y, Yang S, Lyu X, Wang YL, Ji S, Kang S, Jiang Y, Xiang J, He C, Li P, Liu B, Wu C. lncRNA polymorphism affects the prognosis of gastric cancer. World J Surg Oncol 2022; 20:273. [PMID: 36045445 PMCID: PMC9429416 DOI: 10.1186/s12957-022-02723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background Previous studies have found that lncRNA polymorphisms are associated with the prognosis of gastric cancer (GC), but the specific roles of many lncRNA polymorphism sites in gastric cancer are still unclear. Our study aims to deeply explore the relationship between genetic polymorphism of lncRNA and the prognosis of GC. Methods The genotypes of candidate SNP locus were detected by Sequenom Mass ARRAY SNP. We deeply analyzed the association of lncRNA polymorphisms with GC prognosis by univariate and multivariate Cox regression, stratified analysis, conjoint analysis, and log-rank test. Results We found that mutations at rs2579878 and rs10036719 loci reduced the risk of poor prognosis of GC. Stratified analysis showed that rs2795025, rs10036719, and rs12516079 polymorphisms were all associated with tumor prognosis. In addition, conjoint analyses showed that the interaction between these two polymorphic sites (rs2795025 and rs12516079) could increase the risk of poor prognosis. Multivariate analysis also found that the AG/AA genotype of rs10036719 and AG genotype of rs12516079 were independent prognostic factors. Moreover, the high expression of both CCDC26 and LINC02122 were shown to be associated with the poor survival status of GC patients. Conclusions We find that the genetic polymorphism of lncRNA plays a role in the development of GC and is closely related to the survival time of patients. It could serve as a predictor of the prognosis of GC.
Collapse
Affiliation(s)
- Yanping Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shuangfeng Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xuejie Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shumi Ji
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shuling Kang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.,Fuzhou Center for Disease Control and Prevention, Fuzhou, China
| | - Yu Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenzhou He
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Peixin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baoying Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China. .,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Chuancheng Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China. .,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Najafi S, Khatami SH, Khorsand M, Jamali Z, Shabaninejad Z, Moazamfard M, Majidpoor J, Aghaei Zarch SM, Movahedpour A. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 2022; 418:113294. [PMID: 35870535 DOI: 10.1016/j.yexcr.2022.113294] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
New research has indicated that long non-coding RNAs (lncRNAs) play critical roles in a broad range of biological processes, including the pathogenesis of many complex human diseases, including cancer. The detailed regulation mechanisms of many lncRNAs in cancer initiation and progression have yet to be discovered, even though a few of lncRNAs' functions in cancer have been characterized. In the present study, we summarize recent advances in the mechanisms and functions of lncRNAs in cancer. We focused on the roles of newly-identified lncRNAs as oncogenes and tumor suppressors, as well as the potential pathways these molecules could play. The paper also discusses their potential uses as biomarkers for the diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Xiang X, Chen L, He J, Ma G, Li Y. LncRNA GAS5 rs145204276 Polymorphism Reduces Renal Cell Carcinoma Susceptibility in Southern Chinese Population. J Inflamm Res 2022; 15:1147-1158. [PMID: 35210817 PMCID: PMC8863339 DOI: 10.2147/jir.s348628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Xiaoyao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Linfa Chen
- Department of NeUrology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000, People’s Republic of China
| | - Jiawen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Shunde, 528300, People’s Republic of China
- Correspondence: Guoda Ma, Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Shunde, 528300, People’s Republic of China, Email
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- You Li, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China, Email
| |
Collapse
|
10
|
Gao G, Liu C, Li X, Guan X, Yang X, Qin P. Growth arrest-specific 5 (GAS5) insertion/deletion polymorphism and cancer susceptibility in Asian populations: A meta-analysis. Medicine (Baltimore) 2021; 100:e27415. [PMID: 34731115 PMCID: PMC8519240 DOI: 10.1097/md.0000000000027415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Previous studies have reported the association of an insertion/deletion (Ins/Del) polymorphism (rs145204276 AGGCA/-) in the promoter region of growth arrest-specific 5 (GAS5) with the risk of cancer, such as breast cancer, gastric cancer, and hepatocellular carcinoma. However, the results are still controversial. We aimed to clarify the association of GAS5 rs145204276 polymorphism with cancer risk by meta-analysis. METHODS PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Wanfang, and Cochrane Library were searched for studies concerning GAS5 and cancer published up to November 25, 2019. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate cancer risk. RESULTS A total of 12 case-control studies with 8729 cases and 10,807 controls were included in this meta-analysis. We found that the GAS5 rs145204276 polymorphism was not significantly associated with cancer risk (Del vs Ins: OR = 0.96, 95% CI: 0.81-1.13; Del/Del vs Ins/Ins: OR = 1.00, 95% CI: 0.70-1.43; Ins/Del vs Ins/Ins: OR = 0.92, 95% CI: 0.78-1.08; Ins/Del and Del/Del vs Ins/Ins: OR = 0.93, 95% CI: 0.76-1.13; Del/Del vs Ins/Del and Ins/Ins: OR = 1.04, 95% CI: 0.78-1.38). In the stratified analyses, significant effects on gastric cancer were found (Del vs Ins: OR = 0.79, 95% CI: 0.72-0.86; Del/Del vs Ins/Ins: OR = 0.65, 95% CI: 0.52-0.82; Ins/Del vs Ins/Ins: OR = 0.76, 95% CI: 0.68-0.86; Ins/Del + Del/Del vs Ins/Ins: OR = 0.74, 95% CI: 0.66-0.83; Del/Del vs Ins/Ins + Ins/Del: OR = 0.74, 95% CI: 0.59-0.91). CONCLUSION Our meta-analysis showed that GAS5 rs145204276 polymorphisms were not related to overall cancer risk. However, the GAS5 rs145204276 polymorphism may be a protective factor for gastric cancer in the stratification analyses.
Collapse
Affiliation(s)
- Gan Gao
- Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, LiuZhou, China
| | - Chunming Liu
- Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, LiuZhou, China
| | - Xueli Li
- Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, LiuZhou, China
| | - Xiaoyong Guan
- Department of Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, LiuZhou, China
| | - Xingxing Yang
- Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, LiuZhou, China
| | - Peixu Qin
- Liuzhou Maternity and Child Healthcare Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, LiuZhou, China
| |
Collapse
|
11
|
Zhao S, Liu P, Ruan Z, Li J, Zeng S, Zhong M, Tang L. Association between long non-coding RNA (lncRNA) GAS5 polymorphism rs145204276 and cancer risk. J Int Med Res 2021; 49:3000605211039798. [PMID: 34521242 PMCID: PMC8447101 DOI: 10.1177/03000605211039798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE The long non-coding RNA (lncRNA) growth arrest‑specific transcript 5 (GAS5) plays an important role in various tumors, and an increasing number of studies have explored the association of the GAS5 rs145204276 polymorphism with cancer risk with inconclusive results. METHODS PubMed, Medline, EMBASE, Cochrane databases, and Web of Science were searched, and nine studies involving 6107 cases and 7909 controls were deemed eligible. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the relationship between rs145204276 and cancer risk in six genetic models. RESULTS The pooled results suggest that the variant allele del was not associated with overall cancer risk. However, the subgroup analysis showed that allele del was significantly associated with a 22% decreased risk of gastrointestinal cancer (OR = 0.78, 95% CI: 0.72-0.85). Both sensitivity analyses and trial sequential analyses (TSA) demonstrated that the subgroup results were reliable and robust. Moreover, False-Positive Report Probability (FPRP) analysis indicated that the results had true significant correlations. CONCLUSION These findings provide evidence that the GAS5 rs145204276 polymorphism is associated with the susceptibility to gastrointestinal cancer. Further studies with different ethnicities and larger sample sizes are warranted to confirm these results.
Collapse
Affiliation(s)
- Shushan Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhe Ruan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhuang Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Male breast cancer: an update. Virchows Arch 2021; 480:85-93. [PMID: 34458944 DOI: 10.1007/s00428-021-03190-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Male breast cancer (MBC) is rare, accounting for less than 1% of all breast cancer but the incidence has increased worldwide. Risk factors include increased longevity, obesity, testicular diseases and tumours, and germline mutations of BRCA2. BRCA2 carriers have 80 times the risk of the general population. Men generally present with breast cancer at an older age compared with women. Histologically, MBC is often of grade 2, hormone receptor positive, HER2 negative, and no special type carcinoma although in situ and invasive papillary carcinomas are common. Reporting and staging are similar to female breast cancer. Metastatic lesions to the male breast do occur and should be differentiated from primary carcinomas. Until recently, MBC was thought to be similar to the usual ER positive post-menopausal female counterpart. However, advances in MBC research and trials have highlighted significant differences between the two. This review provides an up to date overview of the biology, genetics, and histology of MBC with comparison to female breast cancers and differential diagnosis from histological mimics.
Collapse
|
13
|
Multifaceted roles of long non-coding RNAs in triple-negative breast cancer: biology and clinical applications. Biochem Soc Trans 2021; 48:2791-2810. [PMID: 33258920 DOI: 10.1042/bst20200666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype that lacks targeted therapy due to the absence of estrogen, progesterone, and HER2 receptors. Moreover, TNBC was shown to have a poor prognosis, since it involves aggressive phenotypes that confer significant hindrance to therapeutic treatments. Recent state-of-the-art sequencing technologies have shed light on several long non-coding RNAs (lncRNAs), previously thought to have no biological function and were considered as genomic junk. LncRNAs are involved in various physiological as well as pathological conditions, and play a key role in drug resistance, gene expression, and epigenetic regulation. This review mainly focuses on exploring the multifunctional roles of candidate lncRNAs, and their strong association with TNBC development. We also summarise various emerging research findings that establish novel paradigms of lncRNAs function as oncogenes and/or tumor suppressors in TNBC development, suggesting their role as prospective therapeutic targets.
Collapse
|
14
|
Genetic Variants of lncRNA GAS5 Contribute to Susceptibility of Ischemic Stroke among Southern Chinese Population. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6634253. [PMID: 33937403 PMCID: PMC8055407 DOI: 10.1155/2021/6634253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that the long noncoding RNA (lncRNA) growth arrest special 5 (GAS5) plays crucial roles in the pathogenesis of ischemic stroke (IS). The current research is aimed at assessing the correlation between two functional GAS5 variants (rs145204276 and rs55829688) and susceptibility to IS in a Han Chinese population. This study genotyped the two GAS5 variants in 1086 IS patients as well as 1045 age-matched healthy controls by using an improved multitemperature ligase detection reaction (iMLDR-TM) genotyping technology. We observed a considerable change in the frequencies of the rs145204276 allele and genotype among the IS patients and healthy control group. The del-T haplotype was substantially more prevalent in the IS cases compared to the control individuals. When study participants were stratified according to environmental factors, we found that the rs145204276 del allele was correlated with a higher risk of IS in male, smokers, hypertensive, and those ≥65 years old. Additional stratification conforming to IS subtypes exhibited that individuals carrying the rs145204276 del allele conferred a higher risk of expanding a larger artery atherosclerosis stroke subset. Moreover, there was a significant association between the rs145204276 del allele and elevated expression of GAS5 in IS patients. In contrast, the frequency of the allele related to rs55829688 was not statistically correlated with IS in all analysis. Our study supports a model wherein the rs145204276 variant in the GAS5 lncRNA is associated with IS risk, thus representing a potentially viable biomarker for IS prevention and treatment.
Collapse
|
15
|
Long Noncoding RNAs Involved in the Endocrine Therapy Resistance of Breast Cancer. Cancers (Basel) 2020; 12:cancers12061424. [PMID: 32486413 PMCID: PMC7353012 DOI: 10.3390/cancers12061424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are defined as RNAs longer than 200 nucleotides that do not encode proteins. Recent studies have demonstrated that numerous lncRNAs are expressed in humans and play key roles in the development of various types of cancers. Intriguingly, some lncRNAs have been demonstrated to be involved in endocrine therapy resistance for breast cancer through their own mechanisms, suggesting that lncRNAs could be promising new biomarkers and therapeutic targets of breast cancer. Here, we summarize the functions and mechanisms of lncRNAs related to the endocrine therapy resistance of breast cancer.
Collapse
|
16
|
Association between lncRNA GAS5, MEG3, and PCAT-1 Polymorphisms and Cancer Risk: A Meta-Analysis. DISEASE MARKERS 2020; 2020:6723487. [PMID: 32300378 PMCID: PMC7142337 DOI: 10.1155/2020/6723487] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/15/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Purpose Long noncoding RNAs (lncRNAs) have been widely studied, and single nucleotide polymorphisms (SNPs) in lncRNAs are considered to be genetic factors that influence cancer susceptibility. The lncRNA GAS5, MEG3, and PCAT-1 polymorphisms are shown to be possibly associated with cancer risk. The aim of this meta-analysis was to systematically evaluate this association. Methods Studies were selected from PubMed, Web of Science, Embase, Google Scholar, Cochrane Library, the Chinese National Knowledge Infrastructure (CNKI), and the Chinese Biomedical Literature Database (CBM) through inclusion and exclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using the random-effects model or fixed-effects model to assess the association between lncRNA polymorphisms and cancer susceptibility. Metaregression and publication bias analyses were also conducted. All analyses were performed using the Stata 12.0 software. Results Sixteen articles (covering 13750 cases and 17194 controls) were included in this meta-analysis. A significant association between SNP rs145204276 and gastric cancer risk was observed (del vs. ins: OR = 0.79, 95%CI = 0.72-0.86; del/del vs. ins/ins+del/ins: OR = 0.74, 95%CI = 0.59-0.91; del/ins vs. ins/ins: OR = 0.84, 95%CI = 0.67-1.05). For rs16901904, a decreased cancer risk was observed in three genetic models (C vs. T: OR = 0.79, 95%CI = 0.70-0.90; CC vs. CT+TT: OR = 0.49, 95%CI = 0.37-0.65; CC vs. TT: OR = 0.49, 95%CI = 0.37-0.66). No statistical significance was found in the metaregression analysis. For all of the included SNPs, no publication bias was found in all genotype models. Conclusions The rs145204276 SNP in lncRNA GAS5 is likely to be associated with gastric cancer risk, whereas the rs16901904 SNP in lncRNA PCAT-1 bears association with a decreased cancer risk.
Collapse
|
17
|
Weng SL, Ng SC, Lee YC, Hsiao YH, Hsu CF, Yang SF, Wang PH. The relationships of genetic polymorphisms of the long noncoding RNA growth arrest-specific transcript 5 with uterine cervical cancer. Int J Med Sci 2020; 17:1187-1195. [PMID: 32547314 PMCID: PMC7294910 DOI: 10.7150/ijms.44583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
The purposes of the investigation were to examine the implications of long noncoding RNA growth arrest-specific transcript 5 (GAS5) in progression and clinicopathological factors of uterine cervical cancer, and patient survival in Taiwan. Genotypic distributions of two GAS5 genetic variants rs145204276 and rs55829688 were detected in 208 patients including 111 patients with invasive cancer, 97 with precancerous lesions as well as 307 control women using real-time polymerase chain reaction. It explored that patients with cervical precancerous lesion had lower rate of AGGCA deletion (Del) in both alleles (Del/Del) of GAS5 rs145204276 as compared with control women. Patients with invasive cancer did not exhibit higher rate of Del/Del. Meanwhile, there were no different genotypic distributions in rs55829688 among patients with cervical invasive cancer and those with precancerous lesions as well as control women. Moreover, cervical cancer patients with Ins (insertion, AGGCA)/Del and Del/Del (-/-) in GAS5 rs55829688 tended to have poorer hazard ratio (HR) of 5 years survival. In addition, lymph node metastasis status exerted the most significantly predictive of 5 years survival rate. Conclusively, GAS5 polymorphism rs145204276 is probably applicable to predict 5 years survival HR of cervical cancer patients. However, the mechanism elucidating the methylation status and transcription function of rs145204276 in uterine cervical cancer needs to be delineated for its unique implication in uterine cervical cancer.
Collapse
Affiliation(s)
- Shun-Long Weng
- Department of Obstetrics and Gynaecology, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing and Management College, Taipei, Taiwan
| | - Soo-Cheen Ng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Chun Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Fang Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:1015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 568] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|