1
|
Mochizuki AY, Nagaraj CB, Depoorter D, Schieffer KM, Kim SY. Germline PTCH1: c.361_362insAlu alteration identified by comprehensive exome and RNA sequencing in a patient with Gorlin syndrome. Am J Med Genet A 2024; 194:e63788. [PMID: 38864234 DOI: 10.1002/ajmg.a.63788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Gorlin syndrome can be caused by pathogenic/likely pathogenic (P/LP) variants in the tumor suppressor gene PTCH1 (9q22.1-q31), which encodes the receptor for the sonic hedgehog (SHH) ligand. We present a 12-month-old boy clinically diagnosed with Gorlin syndrome who was found to have significantly delayed development, palmar pitting, palmar and plantar keratosis, short hands, frontal bossing, coarse face, hypertelorism, a bifid rib, misaligned and missing teeth, and SHH-activated medulloblastoma. Genetic testing, including a pediatric cancer panel and genome sequencing with peripheral blood, failed to identify any P/LP variants in PTCH1. Paired tumor/normal exome sequencing was performed, which identified a germline NM_000264.5 (PTCH1): c.361_362ins? alteration through manual review of sequencing reads. Clinical RNA sequencing further demonstrated an Alu insertion at this region (PTCH1: c.361_362insAlu), providing molecular confirmation of Gorlin syndrome. This finding exemplifies a unique mechanism for PTCH1 disruption in the germline and highlights the importance of comprehensive analysis, including manual review of DNA sequencing reads and the utility of RNA analysis to detect variant types which may not be identified by routine genetic screening techniques.
Collapse
Affiliation(s)
- Aaron Y Mochizuki
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Chinmayee B Nagaraj
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Douglas Depoorter
- Institute for Genome Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- Institute for Genome Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pathology and Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Sun Young Kim
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wang LL, Zou SM, Dong L, Yang M, Qi D, Lu Z, Chen JN, Mei SW, Zhao ZX, Guan X, Jiang Z, Liu Q, Liu Z, Wang XS. Classification and genetic counselling for a novel splicing mutation of the MLH1 intron associated with Lynch syndrome in colorectal cancer. Gastroenterol Rep (Oxf) 2021; 9:552-559. [PMID: 34925852 PMCID: PMC8677562 DOI: 10.1093/gastro/goab030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lynch-syndrome-associated cancer is caused by germline pathogenic mutations in mismatch repair genes. The major challenge to Lynch-syndrome screening is the interpretation of variants found by diagnostic testing. This study aimed to classify the MLH1 c.1989 + 5G>A mutation, which was previously reported as a variant of uncertain significance, to describe its clinical phenotypes and characteristics, to enable detailed genetic counselling. METHODS We reviewed the database of patients with Lynch-syndrome gene detection in our hospital. A novel variant of MLH1 c.1989 + 5G>A identified by next-generation sequencing was further investigated in this study. Immunohistochemical staining was carried out to assess the expression of MLH1 and PMS2 protein in tumour tissue. In silico analysis by Alamut software was used to predict the MLH1 c.1989 + 5G>A variant function. Reverse transcription-polymerase chain reaction and sequencing of RNA from whole blood were used to analyse the functional significance of this mutation. RESULTS Among affected family members in the suspected Lynch-syndrome pedigree, the patient suffered from late-stage colorectal cancer but had a good prognosis. We found the MLH1 c.1989 + 5G>A variant, which led to aberrant splicing and loss of MLH1 and PMS2 protein in the nuclei of tumour cells. An aberrant transcript was detectable and skipping of MLH1 exon 17 in carriers of MLH1 c.1989 + 5G>A was confirmed. CONCLUSIONS MLH1 c.1989 + 5G>A was detected in a cancer family pedigree and identified as a pathological variant in patients with Lynch syndrome. The mutation spectrum of Lynch syndrome was enriched through enhanced genetic testing and close surveillance might help future patients who are suspected of having Lynch syndrome to obtain a definitive early diagnosis.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shuang-Mei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Dan Qi
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhao Lu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jia-Nan Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shi-Wen Mei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhi-Xun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xi-Shan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
4
|
Velázquez C, K. DL, Esteban-Cardeñosa EM, Avila Cobos F, Lastra E, Abella LE, de la Cruz V, Lobatón CD, Claes KB, Durán M, Infante M. Germline Genetic Findings Which May Impact Therapeutic Decisions in Families with a Presumed Predisposition for Hereditary Breast and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12082151. [PMID: 32756499 PMCID: PMC7465232 DOI: 10.3390/cancers12082151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we aim to gain insight in the germline mutation spectrum of ATM, BARD1, BRIP1, ERCC4, PALB2, RAD51C and RAD51D in breast and ovarian cancer families from Spain. We have selected 180 index cases in whom a germline mutation in BRCA1 and BRCA2 was previously ruled out. The importance of disease-causing variants in these genes lies in the fact that they may have possible therapeutic implications according to clinical guidelines. All variants were assessed by combined annotation dependent depletion (CADD) for scoring their deleteriousness. In addition, we used the cancer genome interpreter to explore the implications of some variants in drug response. Finally, we compiled and evaluated the family history to assess whether carrying a pathogenic mutation was associated with age at diagnosis, tumour diversity of the pedigree and total number of cancer cases in the family. Eight unequivocal pathogenic mutations were found and another fourteen were prioritized as possible causal variants. Some of these molecular results could contribute to cancer diagnosis, treatment selection and prevention. We found a statistically significant association between tumour diversity in the family and carrying a variant with a high score predicting pathogenicity (p = 0.0003).
Collapse
Affiliation(s)
- Carolina Velázquez
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
| | - De Leeneer K.
- Center for Medical Genetics, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (D.L.K.); (F.A.C.); (K.B.C.)
| | - Eva M. Esteban-Cardeñosa
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
| | - Francisco Avila Cobos
- Center for Medical Genetics, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (D.L.K.); (F.A.C.); (K.B.C.)
| | - Enrique Lastra
- Unit of Genetic Counseling in Cancer, Complejo Hospitalario de Burgos, 09006 Burgos, Spain;
| | - Luis E. Abella
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, 47012 Valladolid, Spain; (L.E.A.); (V.d.l.C.)
| | - Virginia de la Cruz
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, 47012 Valladolid, Spain; (L.E.A.); (V.d.l.C.)
| | - Carmen D. Lobatón
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
| | - Kathleen B. Claes
- Center for Medical Genetics, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (D.L.K.); (F.A.C.); (K.B.C.)
| | - Mercedes Durán
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
| | - Mar Infante
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
- Correspondence: ; Tel.: +34-983184809
| |
Collapse
|
5
|
Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth. EBioMedicine 2019; 51:102570. [PMID: 31806563 PMCID: PMC7000337 DOI: 10.1016/j.ebiom.2019.11.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The F-box protein S-phase kinase-associated protein 2 (Skp2) is overexpressed and correlated with poor prognosis in human malignancies, including colorectal cancer (CRC). METHODS A natural product library was used for natural compound screening through glycolysis analysis. The expression of Skp2 in CRCs and the inhibitory effect of dioscin on glycolysis were examined through methods of immunoblot, immunofluorescence, immunohistochemical staining, anchorage-dependent and -independent growth assays, EdU incorporation assay, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. FINDINGS We demonstrated that Skp2 was highly expressed in CRC tissues and cell lines. Knockout of Skp2 inhibited HK2 and glycolysis and decreased CRC cell growth in vitro and in vivo. We screened 88 commercially available natural products and found that dioscin, a natural steroid saponin derived from several plants, significantly inhibited glycolysis in CRC cells. Dioscin decreased the protein level of Skp2 by shortening the half-life of Skp2. Further study showed that dioscin attenuated Skp2 phosphorylation on S72 and promoted the interaction between Skp2 and Cdh1, which eventually enhanced Skp2 lysine 48 (K48)-linked polyubiquitination and degradation. Depletion of Cdh1 impaired dioscin-induced Skp2 reduction, rescued HK2 expression, and glycolysis in CRC cells. Finally, dioscin delayed the in vivo tumor growth, promoted Skp2 ubiquitination, and inhibited Skp2 expression in a mouse xenograft model. INTERPRETATION This study suggests that in addition to pharmacological inactivation of Skp2, enhancement of ubiquitination-dependent Skp2 turnover is a promising approach for cancer treatment.
Collapse
|