1
|
Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D’Agostino E, Pugliese G, Cerri S, Vitale MG, Madeo B, Dominici M, Sabbatini R. Bone Metastases and Health in Prostate Cancer: From Pathophysiology to Clinical Implications. Cancers (Basel) 2023; 15:1518. [PMID: 36900309 PMCID: PMC10000416 DOI: 10.3390/cancers15051518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Clinically relevant bone metastases are a major cause of morbidity and mortality for prostate cancer patients. Distinct phenotypes are described: osteoblastic, the more common osteolytic and mixed. A molecular classification has been also proposed. Bone metastases start with the tropism of cancer cells to the bone through different multi-step tumor-host interactions, as described by the "metastatic cascade" model. Understanding these mechanisms, although far from being fully elucidated, could offer several potential targets for prevention and therapy. Moreover, the prognosis of patients is markedly influenced by skeletal-related events. They can be correlated not only with bone metastases, but also with "bad" bone health. There is a close correlation between osteoporosis-a skeletal disorder with decreased bone mass and qualitative alterations-and prostate cancer, in particular when treated with androgen deprivation therapy, a milestone in its treatment. Systemic treatments for prostate cancer, especially with the newest options, have improved the survival and quality of life of patients with respect to skeletal-related events; however, all patients should be evaluated for "bone health" and osteoporotic risk, both in the presence and in the absence of bone metastases. Treatment with bone-targeted therapies should be evaluated even in the absence of bone metastases, as described in special guidelines and according to a multidisciplinary evaluation.
Collapse
Affiliation(s)
- Cinzia Baldessari
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Stefania Pipitone
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Eleonora Molinaro
- Oncology, AUSL of Modena Area Sud, Sassuolo-Vignola-Pavullo, 41121 Modena, Italy
| | - Krisida Cerma
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy
| | - Martina Fanelli
- Department of Oncology, Azienda Ospedaliero Universitaria S. M. della Misericordia, 33100 Udine, Italy
| | - Cecilia Nasso
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
- Medical Oncology, Ospedale Santa Corona, 17027 Pietra Ligure, Italy
| | - Marco Oltrecolli
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Marta Pirola
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Elisa D’Agostino
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Giuseppe Pugliese
- Department of Oncology and Hematology, Univerity of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sara Cerri
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Maria Giuseppa Vitale
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Bruno Madeo
- Unit of Endocrinology, Department of Medical Specialities, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
2
|
Jakob T, Tesfamariam YM, Macherey S, Kuhr K, Adams A, Monsef I, Heidenreich A, Skoetz N. Bisphosphonates or RANK-ligand-inhibitors for men with prostate cancer and bone metastases: a network meta-analysis. Cochrane Database Syst Rev 2020; 12:CD013020. [PMID: 33270906 PMCID: PMC8095056 DOI: 10.1002/14651858.cd013020.pub2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Different bone-modifying agents like bisphosphonates and receptor activator of nuclear factor-kappa B ligand (RANKL)-inhibitors are used as supportive treatment in men with prostate cancer and bone metastases to prevent skeletal-related events (SREs). SREs such as pathologic fractures, spinal cord compression, surgery and radiotherapy to the bone, and hypercalcemia lead to morbidity, a poor performance status, and impaired quality of life. Efficacy and acceptability of the bone-targeted therapy is therefore of high relevance. Until now recommendations in guidelines on which bone-modifying agents should be used are rare and inconsistent. OBJECTIVES To assess the effects of bisphosphonates and RANKL-inhibitors as supportive treatment for prostate cancer patients with bone metastases and to generate a clinically meaningful treatment ranking according to their safety and efficacy using network meta-analysis. SEARCH METHODS We identified studies by electronically searching the bibliographic databases Cochrane Controlled Register of Trials (CENTRAL), MEDLINE, and Embase until 23 March 2020. We searched the Cochrane Library and various trial registries and screened abstracts of conference proceedings and reference lists of identified trials. SELECTION CRITERIA We included randomized controlled trials comparing different bisphosphonates and RANKL-inihibitors with each other or against no further treatment or placebo for men with prostate cancer and bone metastases. We included men with castration-restrictive and castration-sensitive prostate cancer and conducted subgroup analyses according to this criteria. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the quality of trials. We defined proportion of participants with pain response and the adverse events renal impairment and osteonecrosis of the jaw (ONJ) as the primary outcomes. Secondary outcomes were SREs in total and each separately (see above), mortality, quality of life, and further adverse events such as grade 3 to 4 adverse events, hypocalcemia, fatigue, diarrhea, and nausea. We conducted network meta-analysis and generated treatment rankings for all outcomes, except quality of life due to insufficient reporting on this outcome. We compiled ranking plots to compare single outcomes of efficacy against outcomes of acceptability of the bone-modifying agents. We assessed the certainty of the evidence for the main outcomes using the GRADE approach. MAIN RESULTS Twenty-five trials fulfilled our inclusion criteria. Twenty-one trials could be considered in the quantitative analysis, of which six bisphosphonates (zoledronic acid, risedronate, pamidronate, alendronate, etidronate, or clodronate) were compared with each other, the RANKL-inhibitor denosumab, or no treatment/placebo. By conducting network meta-analysis we were able to compare all of these reported agents directly and/or indirectly within the network for each outcome. In the abstract only the comparisons of zoledronic acid and denosumab against the main comparator (no treatment/placebo) are described for outcomes that were predefined as most relevant and that also appear in the 'Summary of findings' table. Other results, as well as results of subgroup analyses regarding castration status of participants, are displayed in the Results section of the full text. Treatment with zoledronic acid probably neither reduces nor increases the proportion of participants with pain response when compared to no treatment/placebo (risk ratio (RR) 1.46, 95% confidence interval (CI) 0.93 to 2.32; per 1000 participants 121 more (19 less to 349 more); moderate-certainty evidence; network based on 4 trials including 1013 participants). For this outcome none of the trials reported results for the comparison with denosumab. The adverse event renal impairment probably occurs more often when treated with zoledronic acid compared to treatment/placebo (RR 1.63, 95% CI 1.08 to 2.45; per 1000 participants 78 more (10 more to 180 more); moderate-certainty evidence; network based on 6 trials including 1769 participants). Results for denosumab could not be included for this outcome, since zero events cannot be considered in the network meta-analysis, therefore it does not appear in the ranking. Treatment with denosumab results in increased occurrence of the adverse event ONJ (RR 3.45, 95% CI 1.06 to 11.24; per 1000 participants 30 more (1 more to 125 more); high-certainty evidence; 4 trials, 3006 participants) compared to no treatment/placebo. When comparing zoledronic acid to no treatment/placebo, the confidence intervals include the possibility of benefit or harm, therefore treatment with zoledronic acid probably neither reduces nor increases ONJ (RR 1.88, 95% CI 0.73 to 4.87; per 1000 participants 11 more (3 less to 47 more); moderate-certainty evidence; network based on 4 trials including 3006 participants). Compared to no treatment/placebo, treatment with zoledronic acid (RR 0.84, 95% CI 0.72 to 0.97) and denosumab (RR 0.72, 95% CI 0.54 to 0.96) may result in a reduction of the total number of SREs (per 1000 participants 75 fewer (131 fewer to 14 fewer) and 131 fewer (215 fewer to 19 fewer); both low-certainty evidence; 12 trials, 5240 participants). Treatment with zoledronic acid and denosumab likely neither reduces nor increases mortality when compared to no treatment/placebo (zoledronic acid RR 0.90, 95% CI 0.80 to 1.01; per 1000 participants 48 fewer (97 fewer to 5 more); denosumab RR 0.93, 95% CI 0.77 to 1.11; per 1000 participants 34 fewer (111 fewer to 54 more); both moderate-certainty evidence; 13 trials, 5494 participants). Due to insufficient reporting, no network meta-analysis was possible for the outcome quality of life. One study with 1904 participants comparing zoledronic acid and denosumab showed that more zoledronic acid-treated participants than denosumab-treated participants experienced a greater than or equal to five-point decrease in Functional Assessment of Cancer Therapy-General total scores over a range of 18 months (average relative difference = 6.8%, range -9.4% to 14.6%) or worsening of cancer-related quality of life. AUTHORS' CONCLUSIONS When considering bone-modifying agents as supportive treatment, one has to balance between efficacy and acceptability. Results suggest that Zoledronic acid likely increases both the proportion of participants with pain response, and the proportion of participants experiencing adverse events However, more trials with head-to-head comparisons including all potential agents are needed to draw the whole picture and proof the results of this analysis.
Collapse
Affiliation(s)
- Tina Jakob
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yonas Mehari Tesfamariam
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sascha Macherey
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cochrane Haematological Malignancies, Cologne, Germany
| | - Kathrin Kuhr
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Adams
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Axel Heidenreich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department of Urology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Potluri HK, Ng TL, Newton MA, Zhang J, Maher CA, Nelson PS, McNeel DG. Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages. J Immunother Cancer 2020; 8:e001510. [PMID: 33335027 PMCID: PMC7745697 DOI: 10.1136/jitc-2020-001510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Previous studies of prostate cancer autoantibodies have largely focused on diagnostic applications. So far, there have been no reports attempting to more comprehensively profile the landscape of prostate cancer-associated antibodies. Specifically, it is unknown whether the quantity of antibodies or the types of proteins recognized change with disease progression. METHODS A peptide microarray spanning the amino acid sequences of the gene products of 1611 prostate cancer-associated genes was synthesized. Serum samples from healthy male volunteers (n=15) and patients with prostate cancer (n=85) were used to probe the array. These samples included patients with various clinical stages of disease: newly diagnosed localized prostate cancer (n=15), castration-sensitive non-metastatic prostate cancer (nmCSPC, n=40), castration-resistant non-metastatic prostate cancer (n=15) and castration-resistant metastatic disease (n=15). The patients with nmCSPC received treatment with either standard androgen deprivation therapy (ADT) or an antitumor DNA vaccine encoding prostatic acid phosphatase. Serial sera samples from these individuals were also used to probe the array, to secondarily determine whether this approach could be used to detect treatment-related changes. RESULTS We demonstrated that this peptide array yielded highly reproducible measurements of serum IgG levels. We found that the overall number of antibody responses did not increase with disease burden. However, the composition of recognized proteins shifted with clinical stage of disease. Our analysis revealed that the largest difference was between patients with castration-sensitive and castration-resistant disease. Patients with castration-resistant disease recognized more proteins associated with nucleic acid binding and gene regulation compared with men in other groups. Our longitudinal data showed that treatments can elicit antibodies detectable by this array, and notably vaccine-treated patients developed increased responses to more proteins over the course of treatment than did ADT-treated patients. CONCLUSIONS This study represents the largest survey of prostate cancer-associated antibodies to date. We have been able to characterize the classes of proteins recognized by patients and determine how they change with disease burden. Our findings further demonstrate the potential of this platform for measuring antigen spread and studying responses to immunomodulatory therapies.
Collapse
Affiliation(s)
| | - Tun Lee Ng
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael A Newton
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jin Zhang
- Medicine, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | | | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Preventing Osteoporosis in Men Taking Androgen Deprivation Therapy for Prostate Cancer: A Systematic Review and Meta-Analysis. Eur Urol Oncol 2019; 2:551-561. [DOI: 10.1016/j.euo.2018.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022]
|
5
|
|
6
|
Golds G, Houdek D, Arnason T. Male Hypogonadism and Osteoporosis: The Effects, Clinical Consequences, and Treatment of Testosterone Deficiency in Bone Health. Int J Endocrinol 2017; 2017:4602129. [PMID: 28408926 PMCID: PMC5376477 DOI: 10.1155/2017/4602129] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/07/2017] [Indexed: 01/22/2023] Open
Abstract
It is well recognized that bone loss accelerates in hypogonadal states, with female menopause being the classic example of sex hormones affecting the regulation of bone metabolism. Underrepresented is our knowledge of the clinical and metabolic consequences of overt male hypogonadism, as well as the more subtle age-related decline in testosterone on bone quality. While menopause and estrogen deficiency are well-known risk factors for osteoporosis in women, the effects of age-related testosterone decline in men on bone health are less well known. Much of our knowledge comes from observational studies and retrospective analysis on small groups of men with variable causes of primary or secondary hypogonadism and mild to overt testosterone deficiencies. This review aims to present the current knowledge of the consequences of adult male hypogonadism on bone metabolism. The direct and indirect effects of testosterone on bone cells will be explored as well as the important differences in male osteoporosis and assessment as compared to that in females. The clinical consequence of both primary and secondary hypogonadism, as well as testosterone decline in older males, on bone density and fracture risk in men will be summarized. Finally, the therapeutic options and their efficacy in male osteoporosis and hypogonadism will be discussed.
Collapse
Affiliation(s)
- Gary Golds
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 0W8
| | - Devon Houdek
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 0W8
| | - Terra Arnason
- Division of Endocrinology and Metabolism, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 0W8
| |
Collapse
|
7
|
Tosolini M, Pont F, Poupot M, Vergez F, Nicolau-Travers ML, Vermijlen D, Sarry JE, Dieli F, Fournié JJ. Assessment of tumor-infiltrating TCRV γ9V δ2 γδ lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 2017; 6:e1284723. [PMID: 28405516 DOI: 10.1080/2162402x.2017.1284723] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022] Open
Abstract
Most human blood γδ cells are cytolytic TCRVγ9Vδ2+ lymphocytes with antitumor activity. They are currently investigated in several clinical trials of cancer immunotherapy but so far, their tumor infiltration has not been systematically explored across human cancers. Novel algorithms allowing the deconvolution of bulk tumor transcriptomes to find the relative proportions of infiltrating leucocytes, such as CIBERSORT, should be appropriate for this aim but in practice they fail to accurately recognize γδ T lymphocytes. Here, by implementing machine learning from microarray data, we first improved the computational identification of blood-derived TCRVγ9Vδ2+ γδ lymphocytes and then applied this strategy to assess their abundance as tumor infiltrating lymphocytes (γδ TIL) in ∼10,000 cancer biopsies from 50 types of hematological and solid malignancies. We observed considerable inter-individual variation of TCRVγ9Vδ2+γδ TIL abundance both within each type and across the spectrum of cancers tested. We report their prominence in B cell-acute lymphoblastic leukemia (B-ALL), acute promyelocytic leukemia (M3-AML) and chronic myeloid leukemia (CML) as well as in inflammatory breast, prostate, esophagus, pancreas and lung carcinoma. Across all cancers, the abundance of αβ TILs and TCRVγ9Vδ2+ γδ TILs did not correlate. αβ TIL abundance paralleled the mutational load of tumors and positively correlated with inflammation, infiltration of monocytes, macrophages and dendritic cells (DC), antigen processing and presentation, and cytolytic activity, in line with an association with a favorable outcome. In contrast, the abundance of TCRVγ9Vδ2+ γδ TILs did not correlate with these hallmarks and was variably associated with outcome, suggesting that distinct contexts underlie TCRVγ9Vδ2+ γδ TIL and αβ TIL mobilizations in cancer.
Collapse
Affiliation(s)
- Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Laboratoire d'Excellence TOUCAN, Toulouse, France; Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France; Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; Institut Universitaire du Cancer de Toulouse (IUCT), Toulouse, France
| | - Frédéric Pont
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Laboratoire d'Excellence TOUCAN, Toulouse, France; Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - François Vergez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Institut Universitaire du Cancer de Toulouse (IUCT), Toulouse, France
| | | | - David Vermijlen
- Central Laboratory for Advanced Diagnostics and Biomedical Research (CLADIBIOR), University of Palermo , Palermo, Italy
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Francesco Dieli
- Department of Biopharmacy - Institute for Medical Immunology (IMI), Université Libre de Bruxelles , Bruxelles, Belgium
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France; INSERM U1037-Université Paul Sabatier-CNRS ERL5294, Université de Toulouse, Toulouse, France; Laboratoire d'Excellence TOUCAN, Toulouse, France; Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| |
Collapse
|
8
|
Gaffney CD, Pagano MJ, Kuker AP, Stember DS, Stahl PJ. Osteoporosis and Low Bone Mineral Density in Men with Testosterone Deficiency Syndrome. Sex Med Rev 2015; 3:298-315. [PMID: 27784602 DOI: 10.1002/smrj.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Testosterone deficiency syndrome (TDS) is a risk factor for low bone mineral density (BMD) and osteoporosis. Knowledge of the relationship between TDS and bone health, as well as the practical aspects of how to diagnose and treat low BMD, is therefore of practical importance to sexual medicine practitioners. AIM The aim of this study was to review the physiologic basis and clinical evidence of the relationship between TDS and bone health; and to provide a practical, evidence-based algorithm for the diagnosis and management of low BMD in men with TDS. METHODS Method used was a review of relevant publications in PubMed. MAIN OUTCOME MEASURES Pathophysiology of low BMD in TDS, morbidity, and mortality of osteoporosis in men, association between TDS and osteoporosis, indications for dual X-ray absorptiometry (DXA) scanning in TDS, evidence for testosterone replacement therapy (TRT) in men with osteoporosis, treatment for osteoporosis in the setting of TDS. RESULTS Sex hormones play a pleomorphic role in maintenance of BMD. TDS is associated with increased risk of osteoporosis and osteopenia, both of which contribute to morbidity and mortality in men. DXA scanning is indicated in men older than 50 years with TDS, and in younger men with longstanding TDS. Men with TDS and osteoporosis should be treated with anti-osteoporotic agents and TRT should be highly considered. Men with osteopenia should be stratified by fracture risk. Those at high risk should be treated with anti-osteoporotic agents with strong consideration of TRT; while those at low risk should be strongly considered for TRT, which has a beneficial effect on BMD. CONCLUSION Low BMD is a prevalent and treatable cause of morbidity and mortality in men with TDS. Utilization of a practical, evidence-based approach to diagnosis and treatment of low BMD in men with TDS enables sexual medicine practitioners to make a meaningful impact on patient quality of life and longevity. Gaffney CD, Pagano MJ, Kuker AP, Stember DS, and Stahl PJ. Osteoporosis and low bone mineral density in men with testosterone deficiency syndrome.
Collapse
Affiliation(s)
| | - Matthew J Pagano
- Department of UrologyColumbia University Medical CenterNew YorkNYUSA
| | - Adriana P Kuker
- Division of EndocrinologyDepartment of MedicineColumbia University Medical CenterNew YorkNYUSA
| | - Doron S Stember
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Peter J Stahl
- Department of UrologyColumbia University Medical CenterNew YorkNYUSA.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Androgen deprivation therapy (ADT) remains a common treatment for prostate cancer, even in the nonmetastatic setting and in scenarios without evidence of efficacy. Increasing attention has focused on its adverse effects, of which bone disease in the form of osteoporosis and fractures has been one of the major concerns. Recently published articles are reviewed, focusing on ADT effects on bone and management of ADT-associated bone disease. RECENT FINDINGS A range of strategies directed at ADT-associated bone disease are available, including antiresorptive agents such as denosumab and bisphosphonates, as well as complementary approaches such as calcium and vitamin D supplementation, exercise regimens, and multifaceted interventions incorporating several approaches. Most interventions used bone mineral density as a surrogate outcome, despite compelling evidence that it inadequately captures fracture risk. SUMMARY The antiresorptive agents are clearly able to preserve bone mineral density in men on ADT, whereas other approaches have modest to no benefits. Unfortunately, despite intense research interest in this area, no approach has yet demonstrated a definitive and convincing reduction in clinically relevant fracture outcomes. This emphasizes the importance of restricting the use of ADT to settings in which its benefits are clearly established, in order to limit unnecessary complications.
Collapse
|
10
|
Nishizawa S, Inagaki T, Iba A, Kikkawa K, Kodama Y, Matsumura N, Kohjimoto Y, Hara I. Zoledronic acid prevents decreases in bone mineral density in patients with prostate cancer undergoing combined androgen blockade. SPRINGERPLUS 2014; 3:586. [PMID: 25332886 PMCID: PMC4197198 DOI: 10.1186/2193-1801-3-586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/30/2014] [Indexed: 11/24/2022]
Abstract
The aim of this study was to evaluate the effect of zoledronic acid (ZA) on bone mineral density (BMD) in patients with prostate cancer receiving combined androgen blockade (CAB) as a first-line androgen deprivation therapy. Patients receiving CAB for prostate cancer without bone metastasis were candidates for this study. Forty-two patients were randomly assigned to receive either ZA or no treatment. BMD were measured at baseline and at 12 months. Bone-turnover markers, including cross-linked N-telopeptide of type I collagen (NTX), C-telopeptide of type I collagen (ICTP), and bone-specific alkaline phosphatase (BAP), were assessed during study periods. Patients on ZA maintained BMD after a year of treatment. Change in T-score from baseline differed significantly between the two groups (P=0.009). An inverse correlation was demonstrated between baseline and change in T-score in the ZA group. While ZA prevented an increase in ICTP and BAP, the increase in NTX was suppressed only in patients with low baseline T-score. ZA prevented a decrease in BMD in patients undergoing CAB, especially those with lower baseline BMD.
Collapse
Affiliation(s)
- Satoshi Nishizawa
- Department of Urology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509 Japan ; Department of Urology, Rinku General Medical Center, Osaka, Japan
| | | | - Akinori Iba
- Department of Urology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509 Japan
| | - Kazuro Kikkawa
- Department of Urology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509 Japan
| | - Yoshiki Kodama
- Department of Urology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509 Japan
| | - Nagahide Matsumura
- Department of Urology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509 Japan
| | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509 Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-8509 Japan
| |
Collapse
|
11
|
Sfoungaristos S, Frank SJ, Duvdevani M, Gofrit ON, Yutkin V, Katz R, Pode D, Perimenis P. Contemporary pharmacotherapy for the prevention of skeletal complications in patients with prostate cancer. Expert Opin Pharmacother 2014; 15:2513-24. [PMID: 25234584 DOI: 10.1517/14656566.2014.960390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bones represent the most common metastatic sites in prostate cancer (PCa) patients, and in addition with androgen deprivation therapy, they represent the causative reasons of bone mineral density loss and the onset of skeletal-related events. AREAS COVERED An extensive search of PubMed/Medline was performed to identify randomized, Phase II/III controlled trials reporting results regarding the prevention of skeletal morbidity in patients with PCa. EXPERT OPINION Preventing bone health is an imperative issue for preserving quality of life and elongate survival and, thus, a concerted effort should be made to monitor skeletal changes and to apply treatment for preventing bone loss. Although several agents have received approval for routine use, it is of paramount importance to identify the appropriate patients who would mostly be benefited by the use of these agents with attention to documenting the toxicity and economic implications. Additionally, it remains to be justified the frequency of administration in order to balance the efficacy and the potential complications.
Collapse
Affiliation(s)
- Stavros Sfoungaristos
- Hadassah University Hospital, the Hebrew University , Jerusalem, 91120 , Israel +972508946695 ;
| | | | | | | | | | | | | | | |
Collapse
|