1
|
Teng J, Zhao Y, Li YB, Xue LY, Zhai YX, Liu JR, Wang H, Ji XS. LECT2 mediates antibacterial immune response induced by Nocardia seriolae infection in the northern snakehead. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109708. [PMID: 38908810 DOI: 10.1016/j.fsi.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Leukocyte-derived chemotaxin-2 (LECT2) is a multifunctional immunoregulator that plays several pivotal roles in the host's defense against pathogens. This study aimed to elucidate the specific functions and mechanisms of LECT2 (CaLECT2) in the northern snakehead (Channa argus) during infections with pathogens such as Nocardia seriolae (N. seriolae). We identified CaLECT2 in the northern snakehead, demonstrating its participation in the immune response to N. seriolae infection. CaLECT2 contains an open reading frame (ORF) of 459 bp, encoding a peptide of 152 amino acids featuring a conserved peptidase M23 domain. The CaLECT2 protein shares 62%-84 % identities with proteins from various other fish species. Transcriptional expression analysis revealed that CaLECT2 was constitutively expressed in all examined tissues, with the highest expression observed in the liver. Following intraperitoneal infection with N. seriolae, CaLECT2 transcription increased in the spleen, trunk kidney, and liver. In vivo challenge experiments showed that injecting recombinant CaLECT2 (rCaLECT2) could protect the snakehead against N. seriolae infection by reducing bacterial load, enhancing serum antibacterial activity and antioxidant capacity, and minimizing tissue damage. Moreover, in vitro analysis indicated that rCaLECT2 significantly enhanced the migration, respiratory burst, and microbicidal activity of the head kidney-derived phagocytes. These findings provide new insights into the role of LECT2 in the antibacterial immunity of fish.
Collapse
Affiliation(s)
- Jian Teng
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China; Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Yan Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Yu Bao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yi Xiang Zhai
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Jian Ru Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Hui Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Xiang Shan Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China.
| |
Collapse
|
2
|
Liu W, Wang Q, Yeerlan J, Yan Y, Xu L, Jia C, Liu X, Zhang L. Global research trends and hotspots for leukocyte cell-derived chemotaxin-2 from the past to 2023: a combined bibliometric review. Front Immunol 2024; 15:1413466. [PMID: 38881894 PMCID: PMC11176436 DOI: 10.3389/fimmu.2024.1413466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2) is an important cytokine synthesized by liver. Significant research interest is stimulated by its crucial involvement in inflammatory response, immune regulation, disease occurrence and development. However, bibliometric study on LECT2 is lacking. In order to comprehend the function and operation of LECT2 in human illnesses, we examined pertinent studies on LECT2 investigation in the Web of Science database, followed by utilizing CiteSpace, VOSview, and Scimago Graphica for assessing the yearly quantity of papers, countries/regions involved, establishments, authors, publications, citations, and key terms. Then we summarized the current research hotspots in this field. Our study found that the literature related to LECT2 has a fluctuating upward trend. "Angiogenesis", "ALECT2", "diagnosis", and "biliary atresia" are the current investigative frontiers. Our findings indicated that liver diseases (e.g. liver fibrosis and hepatic cell carcinoma), systemic inflammatory disease, and amyloidosis are the current research focus of LECT2. The current LECT2 research outcomes are not exceptional. We hope to promote the scientific research of LECT2 and exploit its potential for clinical diagnosis and treatment of related diseases through a comprehensive bibliometric review.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurology, Nanbu People’s Hospital, Nanbu, China
| | - Qin Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | | | - Yirui Yan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Luke Xu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Cui Jia
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Xinlian Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Zhu MH, Liu YJ, Li CY, Tao F, Yang GJ, Chen J. The emerging roles of leukocyte cell-derived chemotaxin-2 in immune diseases: From mechanisms to therapeutic potential. Front Immunol 2023; 14:1158083. [PMID: 36969200 PMCID: PMC10034042 DOI: 10.3389/fimmu.2023.1158083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially identified as a chemokine mediating neutrophil migration, is a multifunctional secreted factor involved in diverse physiological and pathological processes. The high sequence similarity of LECT2 among different vertebrates makes it possible to explore its functions by using comparative biology. LECT2 is associated with many immune processes and immune-related diseases via its binding to cell surface receptors such as CD209a, Tie1, and Met in various cell types. In addition, the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney, liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the mechanisms of LECT2-mediated diverse immune pathogenic conditions in various tissues remain to be fully elucidated due to the functional and signaling heterogeneity. Here, we provide a comprehensive summary of the structure, the “double-edged sword” function, and the extensive signaling pathways of LECT2 in immune diseases, as well as the potential applications of LECT2 in therapeutic interventions in preclinical or clinical trials. This review provides an integrated perspective on the current understanding of how LECT2 is associated with immune diseases, with the aim of facilitating the development of drugs or probes against LECT2 for the theranostics of immune-related diseases.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| |
Collapse
|
4
|
Xie Y, Fan K, Guan S, Hu Y, Gao Y, Zhou W. LECT2: A pleiotropic and promising hepatokine, from bench to bedside. J Cell Mol Med 2022; 26:3598-3607. [PMID: 35656863 PMCID: PMC9258709 DOI: 10.1111/jcmm.17407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/12/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
LECT2 (leucocyte cell-derived chemotaxin 2) is a 16-kDa protein mainly produced by hepatocytes. It was first isolated in PHA-activated human T-cell leukaemia SKW-3 cells and originally identified as a novel neutrophil chemotactic factor. However, many lines of studies suggested that LECT2 was a pleiotropic protein, it not only functioned as a cytokine to exhibit chemotactic property, but also played multifunctional roles in some physiological conditions and pathological abnormalities, involving liver regeneration, neuronal development, HSC(haematopoietic stem cells) homeostasis, liver injury, liver fibrosis, hepatocellular carcinoma, metabolic disorders, inflammatory arthritides, systemic sepsis and systemic amyloidosis. Among the above studies, it was discovered that LECT2 could be a promising molecular biomarker and therapeutic target. This review summarizes LECT2-related receptors and pathways, basic and clinical researches, primarily in mice and human, for a better comprehension and management of these diseases in the future.
Collapse
Affiliation(s)
- Yuan Xie
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- Department of General Surgery IIThe First People's Hospital of ZhaoqingZhaoqingChina
| | - Kai‐Wei Fan
- Department of Cerebrovascular DiseaseThe First People's Hospital of ZhaoqingZhaoqingChina
| | - Shi‐Xing Guan
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yang Hu
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei‐Jie Zhou
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Lee S, Lee RH, Kim SJ, Lee HK, Na CS, Song KD. Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1942-1949. [PMID: 31480179 PMCID: PMC6819688 DOI: 10.5713/ajas.19.0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
Objective Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. Methods Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor κB (NFκB) and activated protein 1 (AP-1) inhibitors. Results The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of NFκB or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both NFκB and AP-1 transcription factors are required for the induction of chLECT2 expression. Conclusion The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.
Collapse
Affiliation(s)
- Seokhyun Lee
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Ra Ham Lee
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan 31499, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Chong-Sam Na
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju 54896, Korea.,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
6
|
Okumura A, Saito T, Tobiume M, Hashimoto Y, Sato Y, Umeyama T, Nagi M, Tanabe K, Unoki-Kubota H, Kaburagi Y, Hasegawa H, Miyazaki Y, Yamagoe S. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice. Biochem Biophys Rep 2017; 12:166-171. [PMID: 29090278 PMCID: PMC5645298 DOI: 10.1016/j.bbrep.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 08/22/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN)-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice. LECT2-deficient mice are less sensitive to LPS/d-GalN-induced hepatitis. The IFN-γ level in hepatic NK and NKT cells is lower in LECT2-deficient mice. IL-12-induced IFN-γ production is diminished in LECT2-deficient mice. The pathological role of LECT2 in hepatitis could depend on the initiation of immune response cells.
Collapse
Affiliation(s)
- Akinori Okumura
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Takeshi Saito
- NARO Western Region Agricultural Research Center, 1-3-1 Senyu-cho, Zentsuji, Kagawa 765-8508, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuki Hashimoto
- Department of Chemotherapy and Mycosis, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takashi Umeyama
- Department of Chemotherapy and Mycosis, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Minoru Nagi
- Department of Chemotherapy and Mycosis, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Koichi Tanabe
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Hiroyuki Unoki-Kubota
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yasushi Kaburagi
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycosis, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Satoshi Yamagoe
- Department of Chemotherapy and Mycosis, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
7
|
Slowik V, Apte U. Leukocyte Cell-Derived Chemotaxin-2: It's Role in Pathophysiology and Future in Clinical Medicine. Clin Transl Sci 2017; 10:249-259. [PMID: 28466965 PMCID: PMC5504477 DOI: 10.1111/cts.12469] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/01/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- V Slowik
- Department of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Hospitals and Clinic, 2401 Gillham Road, Kansas City, Missouri, 64108, USA
| | - U Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS1018, Kansas City, Kansas, 66160, USA
| |
Collapse
|
8
|
Okumura A, Unoki-Kubota H, Yoshida-Hata N, Yamamoto-Honda R, Yamashita S, Iwata M, Tobe K, Kajio H, Noda M, Katai N, Yamagoe S, Kaburagi Y. Reduced serum level of leukocyte cell-derived chemotaxin 2 is associated with the presence of diabetic retinopathy. Clin Chim Acta 2016; 463:145-149. [PMID: 27816666 DOI: 10.1016/j.cca.2016.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) signaling is an important pathway in the development of diabetic retinopathy (DR). A recent report showed that leukocyte cell-derived chemotaxin 2 (LECT2) suppresses the VEGF signaling in endothelial cells. However, the clinical relevance of LECT2 in DR is unknown. This study aimed to investigate serum LECT2 levels and the presence of DR. METHODS The study included 230 people with type 2 diabetes mellitus (DM), 95 with DR and 135 without DR. Serum LECT2 levels were measured using an enzyme-linked immunosorbent assay. Data were evaluated using Spearman's rank correlation, univariate and multivariate logistic regression. RESULTS Serum LECT2 levels were significantly lower in participants with DM having DR than in those not having DR (35.6±14.9ng/ml vs. 44.5±17.6ng/ml, P<0.001). Spearman's rank correlation analysis revealed a significant association between serum LECT2 levels and the presence of DR (P<0.001). Multiple regression analysis revealed that serum LECT2 levels were independently related to DR (P<0.001). CONCLUSIONS These findings indicated that serum LECT2 level is negatively associated with the presence of DR and suggest that low circulating LECT2 level is a risk factor for DR.
Collapse
Affiliation(s)
- Akinori Okumura
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hiroyuki Unoki-Kubota
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Natsuyo Yoshida-Hata
- Department of Ophthalmology, Center Hospital, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Ritsuko Yamamoto-Honda
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shigeo Yamashita
- Department of Diabetes and Endocrinology, JR Tokyo General Hospital, Tokyo 151-8528, Japan
| | - Minoru Iwata
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Endocrinology and Diabetes, Saitama Medical University, Saitama 350-0495, Japan
| | - Naomichi Katai
- Department of Ophthalmology, Center Hospital, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Satoshi Yamagoe
- Department of Chemotherapy and Mycosis, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasushi Kaburagi
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.
| |
Collapse
|
9
|
Abril N, Ruiz-Laguna J, García-Sevillano MÁ, Mata AM, Gómez-Ariza JL, Pueyo C. Heterologous microarray analysis of transcriptome alterations in Mus spretus mice living in an industrial settlement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2183-2192. [PMID: 24460498 DOI: 10.1021/es4053973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work demonstrates the successful application of a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to assess the biological effects of an industrial settlement on inhabitant Mus spretus mice. The transcriptomes of animals in the industrial settlement contrasted with those of specimens collected from a nearby protected ecosystem. Proteins encoded by the differentially expressed genes were broadly categorized into six main functional classes. Immune-associated genes were mostly induced and related to innate and acquired immunity and inflammation. Genes sorted into the stress-response category were mainly related to oxidative-stress tolerance and biotransformation. Metabolism-associated genes were mostly repressed and related to lipid metabolic pathways; these included genes that encoded 11 of the 20 cholesterol biosynthetic pathway enzymes. Crosstalk between members of different functional categories was also revealed, including the repression of serine-protease genes and the induction of protease-inhibitor genes to control the inflammatory response. Absolute quantification of selected transcripts was performed via RT-PCR to verify the microarray results and assess interindividual variability. Microarray data were further validated by immunoblotting and by cholesterol and protein-thiol oxidation level determinations. Reported data provide a broad impression of the biological consequences of residing in an industrial area.
Collapse
Affiliation(s)
- Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), Severo Ochoa Building, University of Córdoba , Rabanales Campus, 14071 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Xu Q, Chen Y, Tong YY, Huang ZY, Zhao WM, Duan XJ, Zhang Y, Li X, Chang GB, Chen GH. Identification and expression analysis of the leukocyte cell-derived chemotaxin-2 (LECT2) gene in duck (Anas platyrhynchos). Gene 2014; 533:280-5. [DOI: 10.1016/j.gene.2013.09.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/01/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
|
11
|
Leukocyte cell-derived chemotaxin 2 is a zinc-binding protein. FEBS Lett 2013; 587:404-9. [DOI: 10.1016/j.febslet.2013.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/08/2012] [Accepted: 01/09/2013] [Indexed: 11/24/2022]
|
12
|
Ando K, Kato H, Kotani T, Ozaki M, Arimura Y, Yagi J. Plasma leukocyte cell-derived chemotaxin 2 is associated with the severity of systemic inflammation in patients with sepsis. Microbiol Immunol 2012; 56:708-18. [DOI: 10.1111/j.1348-0421.2012.00488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Shi X, Zhang Z, Qu M, Ding S, Zheng L. Genomic organization, promoter characterization and expression analysis of the leukocyte cell-derived chemotaxin-2 gene in Epinephelus akaraa. FISH & SHELLFISH IMMUNOLOGY 2012; 32:1041-1050. [PMID: 22402569 DOI: 10.1016/j.fsi.2012.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Leucocyte cell-derived chemotaxin 2 (LECT2) was first identified as a chemotactic factor and has been subsequently proven to be a multifunctional protein that mediates the regulation of liver regeneration, carcinogenesis and Natural killer T (NKT) cell homeostasis in mammals. In fish, it has been recently found to be critical for the inflammatory response to stimuli. However, the in vivo function of LECT2 in fish remains obscure. Base on the full-length cDNA of the Epinephelus akaraa LECT2 (EaLECT2) gene we previously isolated, we sought to analyze its genomic structure and context. The genomic DNA of the EaLECT2 gene spans 2866bp from the transcription start site to the termination codon. As in most LECT2 genes in other vertebrates, the EaLECT2 genomic DNA contains four exons and three introns. An analysis of the promoter region revealed the presence of a TATA box and several putative transcription factor-binding sites. And transcriptional activity analysis suggested that most basal DNA regulatory elements required for EaLECT2 transcriptional activity might be contained within the 581bp region upstream of the transcription start codon. A real-time PCR analysis showed that the EaLECT2 expression levels were slightly increased in the head kidney, liver, gill and brain by bacterial challenge with Vibrio harveyi. Furthermore, the transcriptional level of the EaLECT2 gene in the liver was significantly up-regulated within 1h and reached its peak level at 12h post-stimulation. Higher levels of LECT2 expression were also observed in head kidney in challenged individuals.The expression pattern demonstrates the role of EaLECT2 in the immune response and its functions under other conditions. Additionally, we found that the recombinant EaLECT2 could be expressed as a soluble protein using a prokaryotic expression system with the expression vector pET32a(+) and the soluble protein was further proved to be the recombinant EaLECT2 with the rat antiserum against EaLECT2 we obtained. This work provides a unique basis for substantial work in future projects.
Collapse
Affiliation(s)
- Xiaofeng Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | | | | | | | |
Collapse
|
14
|
Zhang RC, Chen J, Li CH, Lu XJ, Shi YH. Prokaryotic expression, purification, and refolding of leukocyte cell-derived chemotaxin 2 and its effect on gene expression of head kidney-derived macrophages of a teleost fish, ayu (Plecoglossus altivelis). FISH & SHELLFISH IMMUNOLOGY 2011; 31:911-918. [PMID: 21871568 DOI: 10.1016/j.fsi.2011.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is reported to be an immunorelevant protein in ayu (Plecoglossus altivelis). In this study, ayu LECT2 mature peptide (aLECT2m) was expressed as insoluble inclusion bodies in Escherichia coli. The denatured recombinant aLECT2m (raLECT2m) was refolded by a size-exclusion chromatography refolding process achieved by using arginine-containing mobile phase and a decreasing urea gradient. The in vitro chemotactic activity assay showed that the refolded raLECT2m had the bioactivity. By using suppression subtractive hybridization (SSH) method, we further identified up-regulated genes in ayu macrophages treated with refolded raLECT2m. These genes were tightly involved in endocytosis, hydrolysis, transcriptional regulation, signal transduction, and so on. Moreover, real-time quantitative PCR (RT-qPCR) results confirmed that selected 10 genes expression was significantly up-regulated in refolded raLECT2m-treated ayu macrophages. This study provides a basis for further studies of the mechanism of cytokine LECT2 in fish immune responses.
Collapse
Affiliation(s)
- R C Zhang
- Faculty of Life Science and Biotechnology, Ningbo University, Ningbo city 315211, Zhejiang Province, People's Republic of China
| | | | | | | | | |
Collapse
|