1
|
Xiang Q, Zhao Y, Tian S, Wu Z, Lin J, Jiang S, Wang L, Sun Z, Sun C, Li W. CircTMTC1 Mediates Nucleocytoplasmic Translocation of DDX3X to Regulate Osteogenic Differentiation of Human Ligamentum Flavum Cells. Spine (Phila Pa 1976) 2024; 49:E407-E417. [PMID: 39351864 DOI: 10.1097/brs.0000000000005166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 05/02/2025]
Abstract
OBJECTIVE This study was aimed to investigate the potential roles of circTMTC1 in the underlying pathophysiological mechanisms of ossification of the ligamentum flavum (OLF). SUMMARY OF BACKGROUND DATA OLF is the primary contributor to thoracic spinal stenosis, which may cause severe neurological symptoms. There is a lack of effective medical therapy for OLF available so far because the exact underlying mechanism of OLF has not been fully elucidated. CircRNAs are a special class of noncoding RNAs and have attracted a growing interest of research in various human diseases recently. Therefore, we explored the potential roles of circRNAs in the underlying pathophysiological mechanisms of OLF. MATERIALS AND METHODS We performed RNA-seq analysis to investigate the differentially expression profile of circRNAs in osteogenic differentiation of human LF cells, and identified a key circular RNA circTMTC1 functioned in OLF. Subsequently, we performed a series of experiments to investigate the exact molecular and cellular mechanisms in osteogenic differentiation of human ligamentum flavum cells. RESULTS CircTMTC1 is significantly upregulated during osteogenic differentiation of human LF cells. Mechanistically, we found that circTMTC1 could interact with the RNA binding protein DDX3X and enhance its nucleocytoplasmic translocation. An increased cytoplasmic level of DDX3X activated the NLRP3 inflammasome pathway and thus promoted osteogenic differentiation of human ligamentum flavum cells. CONCLUSION Our findings suggested the circTMTC1-DDX3X-NLRP3 inflammasome signaling plays a pivotal role in osteogenic differentiation of human ligamentum flavum cells, which may provide novel diagnostic and therapeutic strategies for OLF.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Longjie Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| |
Collapse
|
2
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Li H, Zhao J, Cao L, Luo Q, Zhang C, Zhang L. The NLRP3 inflammasome in burns: a novel potential therapeutic target. BURNS & TRAUMA 2024; 12:tkae020. [PMID: 38957662 PMCID: PMC11218784 DOI: 10.1093/burnst/tkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024]
Abstract
Burns are an underestimated serious injury negatively impacting survivors physically, psychologically and economically, and thus are a considerable public health burden. Despite significant advancements in burn treatment, many burns still do not heal or develop serious complications/sequelae. The nucleotide-binding oligomerization domain-like receptors (NLRs) family pyrin domain-containing 3 (NLRP3) inflammasome is a critical regulator of wound healing, including burn wound healing. A better understanding of the pathophysiological mechanism underlying the healing of burn wounds may help find optimal therapeutic targets to promote the healing of burn wounds, reduce complications/sequelae following burn, and maximize the restoration of structure and function of burn skin. This review aimed to summarize current understanding of the roles and regulatory mechanisms of the NLRP3 inflammasome in burn wound healing, as well as the preclinical studies of the involvement of NLRP3 inhibitors in burn treatment, highlighting the potential application of NLRP3-targeted therapy in burn wounds.
Collapse
Affiliation(s)
- Haihong Li
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Junhong Zhao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, China
| | - Leilei Cao
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Qizhi Luo
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Lei Zhang
- Department of Psychiatry and Clinical Psychology, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| |
Collapse
|
4
|
Rowe CJ, Nwaolu U, Salinas D, Lansford JL, McCarthy CF, Anderson JA, Valerio MS, Potter BK, Spreadborough PJ, Davis TA. Cutaneous burn injury represents a major risk factor for the development of traumatic ectopic bone formation following blast-related extremity injury. Bone 2024; 181:117029. [PMID: 38331307 DOI: 10.1016/j.bone.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Blast-related traumatic heterotopic ossification (tHO) impacts clinical outcomes in combat-injured patients, leading to delayed wound healing, inflammatory complications, and reduced quality of life. Blast injured patients often have significant burns. This study investigated whether a partial thickness thermal burn injury exacerbates blast-related tHO in a clinically relevant polytrauma animal model. Adult male Sprague Dawley rats were subjected to an established model involving a whole-body blast overpressure exposure (BOP), complex extremity trauma followed by hind limb amputation (CET) followed by the addition of a 10 % total body surface area (TBSA) second degree thermal burn (BU). Micro-CT scans on post-operative day 56 showed a significant increase in HO volume in the CET + BU as compared to the CET alone injury group (p < .0001; 22.83 ± 3.41 mm3 vs 4.84 ± 5.77 mm3). Additionally, CET + BU concomitant with BOP significantly increased HO (p < .0001; 34.95 ± 7.71 mm3) as compared to CET + BU alone, confirming BOP has a further synergistic effect. No HO was detectable in rats in the absence of CET. Serum analysis revealed similar significant elevated (p < .0001) levels of pro-inflammatory markers (Cxcl1 and Il6) at 6 h post-injury (hpi) in the CET + BU and BOP + CET + BU injury groups as compared to naïve baseline values. Real-time qPCR demonstrated similar levels of chondrogenic and osteogenic gene expression in muscle tissue at the site of injury at 168 hpi in both the CET + BU and BOP+CET + BU injury groups. These results support the hypothesis that a 10 % TBSA thermal burn markedly enhances tHO following acute musculoskeletal extremity injury in the presence and absence of blast overpressure. Furthermore, the influence of BOP on tHO cannot be accounted for either in regards to systemic inflammation induced from remote injury or inflammatory-osteo-chondrogenic expression changes local to the musculoskeletal trauma, suggesting that another mechanism beyond BOP and BU synergistic effects are at play. Therefore, these findings warrant future investigations to explore other mechanisms by which blast and burn influence tHO, and testing prophylactic measures to mitigate the local and systemic inflammatory effects of these injuries on development of HO.
Collapse
Affiliation(s)
- Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Uloma Nwaolu
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Daniela Salinas
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jefferson L Lansford
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Conor F McCarthy
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph A Anderson
- Comparative Pathology, Department of Laboratory Animal Resources, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael S Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Benjamin K Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Philip J Spreadborough
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|
5
|
Yang J, Chen G, Fan T, Qu X. M1 macrophage-derived oncostatin M induces osteogenic differentiation of ligamentum flavum cells through the JAK2/STAT3 pathway. JOR Spine 2024; 7:e1290. [PMID: 38222812 PMCID: PMC10782062 DOI: 10.1002/jsp2.1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/17/2023] [Accepted: 09/23/2023] [Indexed: 01/16/2024] Open
Abstract
Background M1 macrophages (Mφs) are involved in osteogenic differentiation of ligamentum flavum (LF) cells and play an important role in heterotopic ossification. However, the mechanism by which M1 Mφs influence osteogenic differentiation of LF cells has not been studied. Methods The effect of conditioned medium including secretions of M1 Mφs (CM-M1) on LF cells was analyzed by GeneChip profiling and ingenuity pathway analysis (IPA). THP-1 cells were polarized into M1 Mφs and CM-M1 was used to induce LF cells. In addition, LF cells were induced by CM-M1 in the presence of cyclooxygenase 2 (COX-2) inhibitors or oncostatin M (OSM)-neutralizing antibodies. Based on the presence of OSM, knockout of OSMR or GP130 receptors, or addition of the Janus kinase 2 (JAK2) inhibitor AZD1480 or signal transducer and activator of transcription 3 (STAT3) inhibitor Stattic were examined for effects on osteogenic differentiation of LF cells. OSM secretion was quantified by ELISA, while qPCR and western blot were used to evaluate expression of osteogenic genes and receptor and signaling pathway-related proteins, respectively. Results GeneChip and IPA results indicate that the OSM signaling pathway and its downstream signaling molecules JAK2 and STAT3 are significantly activated. ELISA results indicate that OSM is highly expressed in cells treated with CM-M1 and lowly expressed in cells treated with CM-M1 and a COX-2 inhibitor. Besides, CM-M1 induces osteogenic differentiation of LF cells, which is weakened when COX-2 inhibitors or OSM-neutralizing antibody are added to it. Recombinant OSM could induce osteogenic differentiation of LF cells and upregulate expression of OSMR, GP130, phosphorylated (P)-JAK2, and P-STAT3. Upon knockdown of OSMR or GP130, or the addition of AZD1480 or Stattic, P-JAK2 and P-STAT3 expression were decreased and osteogenic differentiation was reduced. Conclusion M1 Mφ-derived OSM induces osteogenic differentiation of LF cells and the JAK2/STAT3 signaling pathway plays an important role.
Collapse
Affiliation(s)
- Jun Yang
- Department of OrthopaedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of OrthopaedicsKey Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic DiseasesDalianChina
| | - Guanghui Chen
- Department of OrthopaedicsPeking University Third HospitalBeijingChina
| | - Tianqi Fan
- Department of OrthopaedicsPeking University Third HospitalBeijingChina
| | - Xiaochen Qu
- Department of OrthopaedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of OrthopaedicsKey Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic DiseasesDalianChina
- Department of OrthopaedicsPeking University Third HospitalBeijingChina
| |
Collapse
|