1
|
Meng F, Zhou X, Zhao Z, Pei L, Xia W. Discovery of core genes and intercellular communication role in osteosarcoma. J Appl Genet 2025; 66:323-332. [PMID: 38814547 DOI: 10.1007/s13353-024-00872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/31/2024]
Abstract
Osteosarcoma is a primary malignant bone tumor that affects children and young adults. Understanding the molecular mechanisms underlying osteosarcoma is critical to develop effective treatments. This study aimed to identify core genes and explore the role of intercellular communication in osteosarcoma. We used GSE87437 and GSE152048 dataset to conduct a weighted correlation network analysis (WGCNA) and identify co-expression modules. The enriched biological processes and cellular components of the genes in the steelblue module were analyzed. Next, we explored the expression, diagnostic value, correlation, and association with immune infiltrate of CCSER1 and LOC101929154. Finally, we utilized CIBERSORT algorithm to predict the infiltrated immune cells in osteosarcoma tissues. Our results identified 44 co-expression modules, and the steelblue module was mainly associated with axon development, axonogenesis, and innervation. CCSER1 and LOC101929154 were significantly upregulated in osteosarcoma tissues with poor response to preoperative chemotherapy. Moreover, the expressions of CCSER1 and LOC101929154 were positively correlated. The area under the receiver operating characteristic curve of CCSER1 and LOC101929154 was 0.800 and 0.773, respectively. The expression of CCSER1 was negatively correlated with follicular helper T cells and positively correlated with M0 macrophages, while LOC101929154 was negatively correlated with activated mast cells. Besides, CD4 memory-activated T cells were observed at lower levels in patients who responded well to chemotherapy. Our study identified core genes CCSER1 and LOC101929154 and provided insight into the intercellular communication profile in osteosarcoma. Our results suggested that targeting CCSER1, LOC101929154, and CD4 memory-activated T cells may be a promising strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Fanyu Meng
- Department of Orthopedics, Lixin County People's Hospital, Bozhou, 236700, China.
| | - Xinshe Zhou
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Zhi Zhao
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Lijia Pei
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Weiguo Xia
- Department of Orthopedics, Lixin County People's Hospital, Bozhou, 236700, China
| |
Collapse
|
2
|
Cai S, Chen Y, Hu Z, Lin S, Gao R, Ming B, Zhong J, Sun W, Chen Q, Stone JH, Dong L. Omics in IgG4-related disease. Chin Med J (Engl) 2024:00029330-990000000-01283. [PMID: 39450944 DOI: 10.1097/cm9.0000000000003320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 10/26/2024] Open
Abstract
ABSTRACT Research on IgG4-related disease (IgG4-RD), an autoimmune condition recognized to be a unique disease entity only two decades ago, has processed from describing patients' symptoms and signs to summarizing its critical pathological features, and further to investigating key pathogenic mechanisms. Challenges in gaining a better understanding of the disease, however, stem from its relative rarity-potentially attributed to underrecognition - and the absence of ideal experimental animal models. Recently, with the development of various high-throughput techniques, "omics" studies at different levels (particularly the single-cell omics) have shown promise in providing detailed molecular features of IgG4-RD. While, the application of omics approaches in IgG4-RD is still at an early stage. In this paper, we review the current progress of omics research in IgG4-RD and discuss the value of machine learning methods in analyzing the data with high dimensionality.
Collapse
Affiliation(s)
- Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yu Chen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziwei Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shengyan Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rongfen Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Qian Chen
- The Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - John H Stone
- Division of Rheumatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02301, USA
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
3
|
Lu C, Luo ZF, Tang D, Zheng F, Li S, Liu S, Qiu J, Liu F, Dai Y, Sui WG, Yan Q. Proteomic analysis of glomeruli, tubules and renal interstitium in idiopathic membranous nephropathy (IMN): A statistically observational study. Medicine (Baltimore) 2023; 102:e36476. [PMID: 38115247 PMCID: PMC10727647 DOI: 10.1097/md.0000000000036476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/03/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a common type of primary glomerulonephritis, which pathogenesis are highly involved protein and immune regulation. Therefore, we investigated protein expression in different microregions of the IMN kidney tissue. We used laser capture microdissection and mass spectrometry to identify the proteins in the kidney tissue. Using MSstats software to identify the differently expressed protein (DEP). Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to predict and enrich the potential functions of the DEPs, and DEPs were compared to the Public data in the gene expression omnibus (GEO) database for screening biomarkers of IMN. Immune infiltration analysis was used to analyze the immune proportion in IMN. Three significantly up-regulated proteins were identified in the glomeruli of patients with IMN; 9 significantly up-regulated and 6 significantly down-regulated proteins were identified in the interstitium of patients with IMN. Gene ontology analysis showed that the DEPs in the glomerulus and interstitium were mostly enriched in "biological regulation, the immune system, and metabolic processes." Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEPs in the glomerulus and interstitium were mostly enriched in the "immune system" and the "complement and coagulation cascades. " According to the public information of the GEO database, DEPs in our study, Coatomer subunit delta Archain 1, Laminin subunit alpha-5, and Galectin-1 were highly expressed in the IMN samples from the GEO database; in the immune infiltration analysis, the proportion of resting memory CD4 T cells and activated NK cells in IMN were significantly higher than in the normal group. This study confirmed that there were significant differences in protein expression in different micro-regions of patients with IMN, The protein Coatomer subunit delta Archain 1, Laminin subunit alpha 5, Galectin-1 are potential biomarkers of IMN, the memory T cells CD4 and NK cells, maybe involved in the immunologic mechanism in the development of IMN.
Collapse
Affiliation(s)
- Chang Lu
- The Organ Transplantation Department of No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi, P.R. China
| | - Zhi-Feng Luo
- The Organ Transplantation Department of No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi, P.R. China
- The Second Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Donge Tang
- The Organ Transplantation Department of No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi, P.R. China
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, P.R. China
| | - Fengping Zheng
- The Organ Transplantation Department of No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi, P.R. China
| | - Shanshan Li
- The Organ Transplantation Department of No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi, P.R. China
| | - Shizhen Liu
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, P.R. China
| | - Jing Qiu
- The Organ Transplantation Department of No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi, P.R. China
| | - Fanna Liu
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, P.R. China
| | - Yong Dai
- The Organ Transplantation Department of No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi, P.R. China
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, P.R. China
| | - Wei-Guo Sui
- The Second Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Qiang Yan
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|