2
|
Ke H, Yang T, Zhang F, Chen C, Wang J, Liu J, An X, Xiong L, He X, Zhang L, Li QX. Preclinical pharmacology characterization of HX009, a novel PD1 x CD47 Bi-specific antibody. Sci Rep 2024; 14:28201. [PMID: 39548213 PMCID: PMC11567960 DOI: 10.1038/s41598-024-79865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Certain immune-checkpoint inhibitors have a narrow therapeutic window (TW) as cancer therapeutics, and engineered dual-/multi-targeting agents could potentially widen the TW to bring true clinical benefits. We report a new rationally-designed bispecific-antibody (BsAb), HX009, simultaneously targeting PD1 and CD47 to improve both the efficacy and safety over the respective single-targeting agents by grafting the extracellular domain of SIRPα onto the parental anti-PD1-monoclonal antibody, HX008. This resulted in an IgG4-based "2 × 2" symmetric structure but with an intentionally-reduced CD47-binding affinity, suggesting a novel candidate cancer immunotherapy. Specifically, HX009 has binding affinity constant of 8.951 × 10-9 M for human PD1 and 2.557 × 10-8 M for human CD47, respectively, where the CD47 binding is significantly weaker as compared to the binding affinity of HX008 to PD1 as well as the binding affinity of SIRPα-Fc to CD47, leading to little binding to RBCs and platelets and is contrasting to many CD47-agents in development. However, HX009 effectively and simultaneously binds to the PD1 and CD47 on PD1+CD47+ T-cells via cis-binding and elicits enhanced T cell activation compared to the parental HX008. HX009 caused little cytokine-release in human peripheral blood mononuclear cells. HX009 cross-species binds to cynomolgus monkey PD1/CD47 but not to rodents, making cynomolgus monkeys the choice of species to investigate the pharmacokinetics (PK) and toxicology of HX009. HX009's anti-tumor activities were confirmed in several humanized preclinical mouse models by determining either its anti-PD1 (humanized hu-CD47-MC38 models) or anti-CD47 (HuT-102 lymphoma CDX and three PDX-AML models) functions, although limited available humanized models have hindered broadly demonstration of enhanced anti-tumor activities contributed from the dual targeting of the BsAb. The expanded DLBCL-PDX trial data suggested that both EBV-status and OX40 expression could potentially be two positive predictors for response to HX009. An intravenous (IV) infusion PK study in cynomolgus monkey revealed its largely vasculature distribution, terminal half-life (T1/2) of ~ 50 h, and dose-proportional exposure without accumulation. The anti-drug antibody (ADA) was observed in all monkeys as expected, affecting the PK parameters of repeated administration. The IV single-dose toxicology study with a 14-day observation revealed a maximum tolerated dose of 150 mg/kg, while the repeated-dose (once weekly for 4 weeks, 5 doses in total) study showed a highest non-severely toxic dose (HNSTD) of 15 mg/kg. The desired preclinical PK and safety profiles, along with its antitumor activity, support HX009's candidacy for its clinical development.
Collapse
Affiliation(s)
- Hang Ke
- Hanx Pharmaceuticals, Inc, Hangzhou, China
| | - Tao Yang
- Hanx Pharmaceuticals, Inc, Hangzhou, China
| | | | - Cen Chen
- Hanx Pharmaceuticals, Inc, Hangzhou, China
| | | | | | - Xiaoyu An
- Crown Bioscience, Inc, Taicang, China
| | | | - Xianfei He
- Shanghai Model Organisms Center (SMOC), Shanghai, China
| | - Lei Zhang
- Hanx Pharmaceuticals, Inc, Hangzhou, China
| | | |
Collapse
|
3
|
Yan Z, Ma T, Wang X, Yi L, Wei P, Zhang H, Wang J. Establishment of novel anti-TIM-3 antibodies interfering with its binding to ligands. Heliyon 2024; 10:e28126. [PMID: 38560237 PMCID: PMC10979056 DOI: 10.1016/j.heliyon.2024.e28126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
The T cell immunoglobulin and mucin-domain containing-3 (TIM-3) receptor has gained significant attention as a promising target for cancer immunotherapy. The inhibitory effect of T cells by TIM-3 is mediated through the interaction between TIM-3 and its ligands. Ligand-blocking anti-TIM-3 antibodies possess the potential to reactivate antigen-specific T cells and augment anti-tumor immunity. However, the precise ligand-receptor interactions disrupted by the administration of TIM-3 blocking Abs have yet to be fully elucidated. In this study, we have developed a panel of monoclonal antibodies targeting human TIM-3, namely MsT001, MsT065, MsT229, and MsT286. They exhibited high sensitivities (10 pg/mL) and affinities (3.70 × 10-9 to 4.61 × 10-11 M) for TIM-3. The TIM-3 antibodies recognized distinct epitopes, including linear epitopes (MsT001 and MsT065), and a conformational epitope (MsT229 and MsT286). Additionally, the MsT229 and MsT286 displayed reactivity towards cynomolgus TIM-3. The interactions between TIM-3/Gal-9, TIM-3/HMGB-1, and TIM-3/CEACAM-1 disrupt the binding of MsT229 and MsT286, while leaving the binding of MsT001 and MsT065 unaffected. The inhibitory effect on the interaction between Gal-9 and TIM-3 was found to be dose-dependently in the presence of either MsT229 or MsT286. The findings suggested that the involvement of conformational epitopes in TIM-3 is crucial for its interaction with ligands, and we successfully generated novel anti-TIM-3 Abs that exhibit inhibitory potential. In conclusion, our finding offers valuable insights -on the comprehension and targeting of human TIM-3.
Collapse
Affiliation(s)
- Zhuohong Yan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hongtao Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| |
Collapse
|
4
|
Rusakiewicz S, Tyekucheva S, Tissot-Renaud S, Chaba K, Imbimbo M, Benedetti F, Kammler R, Hornfeld J, Munzone E, Gianni L, Thurlimann B, Láng I, Pruneri G, Gray KP, Regan MR, Loi S, Colleoni M, Viale G, Kandalaft L, Coukos G, Curigliano G. Multiplexed high-throughput immune cell imaging in patients with high-risk triple negative early breast cancer: Analysis from the International Breast Cancer Study Group (IBCSG) Trial 22-00. Eur J Cancer 2024; 200:113535. [PMID: 38309015 DOI: 10.1016/j.ejca.2024.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer (BC) subtype, with dismal prognosis and limited option in advanced settings, yet stromal tumor infiltrating lymphocytes (sTILs) in this subtype has a predictive role. PATIENTS AND METHODS The International Breast Cancer Study Group (IBCSG) Trial 22-00 is a randomized phase III clinical trial testing the efficacy of low-dose metronomic oral Cyclophosphamide-Methotrexate (CM) maintenance following standard adjuvant chemotherapy treatment for early-stage hormone receptor-negative breast cancer patients. A case-cohort sampling was used. We characterized immune cells infiltrates in patients with TNBC by 6 plex immunofluorescence (IF) staining for CD4, FOXP3, CD3, cytokeratine and CD8 RESULTS: We confirmed that high immune CD3+ T cells as well as stromal and intra-epithelial Tregs (CD4+Foxp3+ T cells) infiltrates were associated with a better Distant Recurrence-Free Interval (DRFI), especially in LN+ patient, regardless of the treatment. More importantly, we showed that the spatial distribution of immune cells at baseline is crucial, as CM maintenance was detrimental for T cells excluded LN+ TNBC patients. CONCLUSIONS immune spatial classification on immune cells infiltrates seems crucial and could help patients' selection in clinical trial and greatly improve responses to specific therapies.
Collapse
Affiliation(s)
- S Rusakiewicz
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - S Tyekucheva
- International Breast Cancer Study Group Statistical Center, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - S Tissot-Renaud
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - K Chaba
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - M Imbimbo
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - F Benedetti
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - R Kammler
- Translational Research Coordination, International Breast Cancer Study Group, a division of ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - J Hornfeld
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - E Munzone
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - L Gianni
- Department of Medical Oncology, Ospedale Infermi, AUSL Della Romagna, Rimini, Italy
| | - B Thurlimann
- Kantonsspital St. Gallen, St Gallen, Switzerland; Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - I Láng
- Clinexpert-research, Budapest, Hungary
| | - G Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy; University of Milan, School of Medicine, Milan, Italy
| | - K P Gray
- Division of General Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Biostatistics and Research Design Core, Institutional Centers of Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - M R Regan
- International Breast Cancer Study Group Statistical Center, Division of Biostatistics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Loi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; International Breast Cancer Study Group, a division of ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - M Colleoni
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - G Viale
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy; European Institute of Oncology, IRCCS, Milan, Italy
| | - L Kandalaft
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - G Coukos
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.
| |
Collapse
|
5
|
Zhu Q, Yang Y, Chen K, Zhang Q, Huang Y, Jian S. Diffuse large B-cell lymphoma: the significance of CD8 + tumor-infiltrating lymphocytes exhaustion mediated by TIM3/Galectin-9 pathway. J Transl Med 2024; 22:174. [PMID: 38369502 PMCID: PMC10874540 DOI: 10.1186/s12967-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Overexpression of T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3) is related to the exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs) in diffuse large B-cell lymphoma (DLBCL). However, the mechanism of TIM3-mediated CD8+TILs exhaustion in DLBCL remains poorly understood. Therefore, we aimed to clarify the potential pathway involved in TIM3-mediated CD8+TILs exhaustion and its significance in DLBCL. METHODS The expression of TIM3 and its correlation with CD8+TILs exhaustion, the key ligand of TIM3, and the potential pathway of TIM3-mediated CD8+TILs exhaustion in DLBCL were analyzed using single-cell RNA sequencing and validated by RNA sequencing. The biological significance of TIM3-related pathway in DLBCL was investigated based on RNA sequencing, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction data. Finally, the possible regulatory mechanism of TIM3-related pathway in DLBCL was explored using single-cell RNA sequencing and RNA sequencing. RESULTS Our results demonstrated that CD8+TILs, especially the terminally exhausted state, were the major clusters that expressed TIM3 in DLBCL. Galectin-9, mainly expressed in M2 macrophages, is the key ligand of TIM3 and can induce the exhaustion of CD8+TILs through TIM3/Galectin-9 pathway. Meanwhile, high TIM3/Galectin-9 enrichment is related to immunosuppressive tumor microenvironment, severe clinical manifestations, inferior prognosis, and poor response to CHOP-based chemotherapy, and can predict the clinical efficacy of immune checkpoint blockade therapy in DLBCL. Furthermore, the TIM3/Galectin-9 enrichment in DLBCL may be regulated by the IFN-γ signaling pathway. CONCLUSIONS Our study highlights that TIM3/Galectin-9 pathway plays a crucial role in CD8+TILs exhaustion and the immune escape of DLBCL, which facilitates further functional studies and could provide a theoretical basis for the development of novel immunotherapy in DLBCL.
Collapse
Affiliation(s)
- Qiqi Zhu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Yiming Yang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Kexin Chen
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Qiaoyu Zhang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Yifan Huang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China
| | - Shunhai Jian
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan Nan Road, Nanchong, 637000, Sichuan, China.
| |
Collapse
|