1
|
Olaosebikan HB, Igebu E, Orolu AK, Odunlami GJ, Bamisebi IA, Dada A, Uche E, Adelowo O. Profiles of systemic lupus erythematosus patients with co-existing sickle cell disease: a coincidence or true association? Reumatologia 2024; 62:430-438. [PMID: 39866301 PMCID: PMC11758103 DOI: 10.5114/reum/195432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/29/2024] [Indexed: 01/06/2025] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) and sickle cell disease (SCD) are distinct multisystemic diseases that commonly affect blacks. There are few reports of their co-existence in Western literature and a paucity of reports in Sub-Saharan Africa. Their co-existence is associated with diagnostic delay and treatment dilemmas. The aim is to describe the clinical, laboratory, and treatment profile of Nigerian lupus with sickle cell disease. Material and methods A 7-year retrospective descriptive study of lupus patients with sickle cell disease was performed. Medical records of eligible patients were extracted into a proforma, transferred into SPSS, and analyzed with descriptive statistics. Sociodemographic, clinical, laboratory, and treatment data were presented as frequency and percentages. Results Twelve SLE-SCD cases (female 11, male 1) were identified. The mean age was 28.5 years and the mean duration of illness prior to diagnosis was 9.5 years. The median follow-up period was 3.1 years and the common presentations were mucocutaneous (66%), renal, (50%) serositis (33%), and neurological (16%) in decreasing order. All had anemia and positive antinuclear antibody, 33% had pancytopenia and 75% had positive anti-dsDNA and anti-Smith. Two are on maintenance hemodialysis, one with interstitial lung disease, and one on long-term anticoagulation due to deep vein thrombosis. Conclusions Sickle cell disease and SLE should be considered in SCD with atypical clinical and laboratory features. We hope this report will raise diagnostic suspicion and prompt early diagnosis and treatment to prevent multiorgan damage that may ensue from such an association.
Collapse
Affiliation(s)
- Hakeem Babatunde Olaosebikan
- Department of Medicine, Lagos State University College of Medicine (LASUCOM), Ikeja, Nigeria
- Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | - Etseoghena Igebu
- Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | | | - Gbenga Joshua Odunlami
- Department of Medicine, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria, Nigeria
| | | | - Akin Dada
- Department of Medicine, Lagos State University College of Medicine (LASUCOM), Ikeja, Nigeria
| | - Ebele Uche
- Department of Medicine, Lagos State University College of Medicine (LASUCOM), Ikeja, Nigeria
| | - Olufemi Adelowo
- Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Nigeria
| |
Collapse
|
2
|
Essouma M, Noubiap JJ. Lupus and other autoimmune diseases: Epidemiology in the population of African ancestry and diagnostic and management challenges in Africa. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100288. [PMID: 39282618 PMCID: PMC11399606 DOI: 10.1016/j.jacig.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Autoimmune diseases are prevalent among people of African ancestry living outside Africa. However, the burden of autoimmune diseases in Africa is not well understood. This article provides a global overview of the current burden of autoimmune diseases in individuals of African descent. It also discusses the major factors contributing to autoimmune diseases in this population group, as well as the challenges involved in diagnosing and managing autoimmune diseases in Africa.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Cameroon
| | - Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, Calif
| |
Collapse
|
3
|
Thuner J, Cognard J, Belot A. How to treat monogenic SLE? Best Pract Res Clin Rheumatol 2024; 38:101962. [PMID: 38876818 DOI: 10.1016/j.berh.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Systemic lupus erythematosus is a rare and life-threatening autoimmune disease characterized by autoantibodies against double-stranded DNA, with an immunopathology that remains partially unclear. New insights into the disease have been provided by the discovery of key mutations leading to the development of monogenic SLE, occurring in the context of early-onset disease, syndromic lupus, or familial clustering. The increased frequency of discovering these mutations in recent years, thanks to the advent of genetic screening, has greatly enhanced our understanding of the immunopathogenesis of SLE. These monogenic defects include defective clearance of apoptotic bodies, abnormalities in nucleic acid sensing, activation of the type-I interferon pathway, and the breakdown of tolerance through B or T cell activation or lymphocyte proliferation due to anomalies in TLR signalling and/or NFκB pathway overactivation. The translation of genetic discoveries into therapeutic strategies is presented here, within the framework of personalized therapy.
Collapse
Affiliation(s)
- Jonathan Thuner
- Internal Medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jade Cognard
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Belot
- Pediatric Rheumatology, Nephrology, Dermatology Department, CMR RAISE, Women-Mother-Child Hospital, Hospices Civils de Lyon, Bron, France; CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Université de Lyon, INSERM, Institut National de La Santé Et de La Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France; CNRS, Centre National de La Recherche Scientifique, UMR5308, Lyon, France.
| |
Collapse
|
4
|
Mendonça LO, Frémond ML. Interferonopathies: From concept to clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101975. [PMID: 39122631 DOI: 10.1016/j.berh.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
The horror autoinflammaticus derived from aberrant type I interferon secretion determines a special group of autoinflammatory diseases named interferonopathies. Diverse mechanisms involved in nucleic acids sensing, metabolizing or the lack of interferon signaling retro-control are responsible for the phenotypes associated to Aicardi-Goutières Syndrome (AGS), Proteasome-Associated Autoinflammatory Diseases (PRAAS), STING-Associated Vasculopathy with Infancy Onset (SAVI) and certain forms of monogenic Systemic lupus erythematosus (SLE). This review approaches interferonopathies from the basic immunogenetic concept to diagnosis and treatment.
Collapse
Affiliation(s)
- Leonardo Oliveira Mendonça
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil; Discipline of Clinical Immunology and Allergy, Department of Internal Medicine, Universidade de Santo Amaro (UNISA), São Paulo, Brazil.
| | - Marie-Louise Frémond
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Laboratory of Neurogenetics and Neuroinflammation Imagine Institute, INSERM UMR1163, Paris, France
| |
Collapse
|
5
|
Correia Marques M, Ombrello MJ, Schulert GS. New discoveries in the genetics and genomics of systemic juvenile idiopathic arthritis. Expert Rev Clin Immunol 2024; 20:1053-1064. [PMID: 38641907 PMCID: PMC11303111 DOI: 10.1080/1744666x.2024.2345868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory condition with onset in childhood. It is sporadic, but elements of its stereotypical innate immune responses are likely genetically encoded by both common variants with small effect sizes and rare variants with larger effects. AREAS COVERED Genomic investigations have defined the unique genetic architecture of sJIA. Identification of the class II HLA locus as the strongest sJIA risk factor for the first time brought attention to T lymphocytes and adaptive immune mechanisms in sJIA. The importance of the human leukocyte antigen (HLA) locus was reinforced by recognition that HLA-DRB1*15 alleles are strongly associated with development of drug reactions and sJIA-associated lung disease (sJIA-LD). At the IL1RN locus, genetic variation relates to both risk of sJIA and may also predict non-response to anakinra. Finally, rare genetic variants may have critical roles in disease complications, such as homozygous LACC1 mutations in families with an sJIA-like illness, and hemophagocytic lymphohistiocytosis (HLH) gene variants in some children with macrophage activation syndrome (MAS). EXPERT OPINION Genetic and genomic analysis of sJIA holds great promise for both basic discovery of the course and complications of sJIA, and may help guide personalized medicine and therapeutic decision-making.
Collapse
Affiliation(s)
- Mariana Correia Marques
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Poli MC. Proteasome disorders and inborn errors of immunity. Immunol Rev 2024; 322:283-299. [PMID: 38071420 DOI: 10.1111/imr.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Inborn errors of immunity (IEI) or primary immune deficiencies (PIDD) are caused by variants in genes encoding for molecules that are relevant to the innate or adaptive immune response. To date, defects in more than 450 different genes have been identified as causes of IEI, causing a constellation of heterogeneous clinical manifestations ranging from increased susceptibility to infection, to autoimmunity or autoinflammation. IEI that are mainly characterized by autoinflammation are broadly classified according to the inflammatory pathway that they predominantly perturb. Among autoinflammatory IEI are those characterized by the transcriptional upregulation of type I interferon genes and are referred to as interferonopathies. Within the spectrum of interferonopathies, genetic defects that affect the proteasome have been described to cause autoinflammatory disease and represent a growing area of investigation. This review is focused on describing the clinical, genetic, and molecular aspects of IEI associated with mutations that affect the proteasome and how the study of these diseases has contributed to delineate therapeutic interventions.
Collapse
Affiliation(s)
- M Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Unit of Immunology and Rheumatology Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
7
|
Bucciol G, Delafontaine S, Meyts I, Poli C. Inborn errors of immunity: A field without frontiers. Immunol Rev 2024; 322:15-27. [PMID: 38062988 DOI: 10.1111/imr.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The study of primary immunodeficiencies or inborn errors of immunity continues to drive our knowledge of the function of the human immune system. From the outset, the study of inborn errors has focused on unraveling genetic etiologies and molecular mechanisms. Aided by the continuous growth in genetic diagnostics, the field has moved from the study of an infection dominated phenotype to embrace and unravel diverse manifestations of autoinflammation, autoimmunity, malignancy, and severe allergy in all medical disciplines. It has now moved from the study of ultrarare presentations to producing meaningful impact in conditions as diverse as inflammatory bowel disease, neurological conditions, and hematology. Beyond offering immunogenetic diagnosis, the study of underlying inborn errors of immunity in these conditions points to targeted treatment which can be lifesaving.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Selket Delafontaine
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Cecilia Poli
- Facultad de Medicina Universidad del Desarrollo-Clínica Alemana, Santiago, Chile
- Unidad de Inmunología y Reumatología, Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|