1
|
Wang C, Yu T, Xia Y, Tao F, Sun J, Zhao J, Mao X, Tang M, Yin L, Yang Y, Tan W, Shen L, Zhang S. Serum metabolomic characteristics of COVID-19 patients co-infection with echovirus. Virulence 2025; 16:2497907. [PMID: 40310893 PMCID: PMC12051534 DOI: 10.1080/21505594.2025.2497907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/04/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Currently, the Omicron variant of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate globally. In our multiplex respiratory pathogen detection, we identified numerous instances of co-infection with Echovirus (ECHO) among Coronavirus Disease 2019 (COVID-19) patients, which exacerbated the clinical symptoms of these patients. Such co-infections are likely to impact the subsequent medical treatment. To date, there are no reports on the pathogenic mechanisms related to COVID-19 co-infected with ECHO. Therefore, this study employed the TM Widely-Targeted metabolomics approach to analyze the serum metabolomes of COVID-19 patients with single SARS-CoV-2 infection (COVID-19), COVID-19 patients co-infected with ECHO (COVID-19 + ECHO), and healthy individuals (Control) recruited from routine physical examinations during the same period. Concurrent clinical laboratory tests were performed on the patients to reveal the differences in metabolomic characteristics between the COVID-19 patients and the COVID-19 + ECHO patients, as well as to explore potential metabolic pathways that may exacerbate disease progression. Our findings indicate that both clinical examination indicators and the pathways enriched by differential metabolites confirm that patients with dual infection exhibit higher inflammatory and immune responses compared to those with single COVID-19 infections. This difference is likely reflected through abnormalities in the glycerophospholipid metabolic pathway, with the metabolite Sn-Glycero-3-Phosphocholine playing a crucial role in this process. Finally, we established a diagnostic model based on logistic regression using five differential metabolites, which accurately differentiates between the dual infection population and the single COVID-19 infection population (AUC = 0.828).
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Tingyu Yu
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Ying Xia
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Feng Tao
- The Key Laboratory for Precision Diagnosis and Treatment of Thrombotic Diseases in Xiangyang City, Zaoyang First People’s Hospital, Zaoyang, Hubei Province, China
| | - Jiali Sun
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Jianzhong Zhao
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Xiaogang Mao
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Mengjun Tang
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Shen
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Shuaijie Zhang
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| |
Collapse
|
2
|
Emam AAM, Eyada MMK, Gomaa AHA, Abd El-Fadeal NM, Ibrahim GH, El-Kherbetawy MK, Tawfik NZ. Glucose transporter-1 (GLUT-1) upregulation in vitiligo: A possible link to skin depigmentation. Gene 2025; 950:149383. [PMID: 40032057 DOI: 10.1016/j.gene.2025.149383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Vitiligo is a prevalent autoimmune skin disorder characterized by progressive depigmented patches of the skin and/or mucosa. Lately, extensive research has been investigating molecular pathogenesis underlying vitiligo, epidermal-immune cell crosstalk, structural aberrations in cellular skin components and immune cell metabolism derangements. Glucose transporter-1 (GLUT-1) has recently proved to be increased in proinflammatory conditions and autoimmune diseases. GLUT-1 expression is upregulated in rheumatoid arthritis, systemic lupus erythematosus, psoriasis and chronic spongiotic dermatitis. OBJECTIVE To investigate GLUT-1 expression in vitiligo. SUBJECTS AND METHODS The study included 30 vitiligo patients "vitiligo vulgaris" and 30 healthy individuals. Biopsies of the patients' lesional vitiligo skin and the control group's normal skin were obtained. They were all tested for GLUT-1 mRNA expression using real-time polymerase chain reaction (RT-PCR) and GLUT-1 antibody expression using immunohistochemistry (IHC). Hematoxylin and eosin (H&E) staining for the specimens was additionally done for histopathological assessment. RESULTS GLUT-1 expression was upregulated in lesional skin of vitiligo patients compared to normal control skin (P-value < 0.001). Also, lesional specimens from stable disease showed more GLUT-1 expression than active disease but without a significant difference (P-value = 0.283). There was no significant correlation between the proposed vitiligo histological scoring system and vitiligo signs of the disease activity score. CONCLUSION GLUT-1 could play a crucial role in vitiligo disease onset, persistence and progression, through keratinocyte-melanocyte-fibroblast-immune cell crosstalk, being the initially deranged metabolic pathway for all these cells giving an insight into vitiligo metabolomics.
Collapse
Affiliation(s)
- Amira A M Emam
- Department of Dermatology, Venereology and Andrology Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Moustafa M K Eyada
- Department of Dermatology, Venereology and Andrology Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Amal H A Gomaa
- Department of Dermatology, Venereology and Andrology Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Noha M Abd El-Fadeal
- Department of Medical Biochemistry and Molecular Biology Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Biochemistry Department, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia.
| | - Gehan H Ibrahim
- Department of Medical Biochemistry and Molecular Biology Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Faculty of Medicine, King Salman International University, El Tur, South Sinai 46511, Egypt.
| | | | - Noha Z Tawfik
- Department of Dermatology, Venereology and Andrology Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
3
|
Ma H, Li R, Qu B, Liu Y, Li P, Zhao J. The Role of Bile Acid in Immune-Mediated Skin Diseases. Exp Dermatol 2025; 34:e70108. [PMID: 40302108 DOI: 10.1111/exd.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/07/2025] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
Immune-mediated skin disorders arise from dysfunctional immune responses, instigating inflammatory dermatoses and a reduced quality of life. The complex pathogenesis likely involves genetic risks, environmental triggers and aberrant immune activation. An emerging body of evidence suggests that bile acid disturbances may critically promote immune pathology in certain skin conditions. Bile acids synthesised from cholesterol regulate nutrient metabolism and immune cell function via nuclear receptors and G protein-coupled receptors (GPCRs). Altered bile acid profiles and receptor expression have been identified in psoriasis, atopic dermatitis (AD) and autoimmune blistering diseases. Disruptions in bile acid signalling affect the inflammatory and metabolic pathways linked to these disorders. Targeting components of the bile acid axis represents a promising therapeutic strategy. This review elucidates the intricate links between bile acid homeostasis and immune dysfunction in inflammatory skin diseases, synthesising evidence that targeting bile acid pathways may unlock innovative therapeutic avenues. This study compiles clinical and experimental data revealing disrupted bile acid signalling and composition in various immune-mediated dermatoses, highlighting the emerging significance of bile acids in cutaneous immune regulation.
Collapse
Affiliation(s)
- Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ruonan Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoquan Qu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuchen Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Beijing Institute of Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Matarrese P, Puglisi R, Mattia G, Samela T, Abeni D, Malorni W. An Overview of the Biological Complexity of Vitiligo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3193670. [PMID: 39735711 PMCID: PMC11671640 DOI: 10.1155/omcl/3193670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role. The aim of this work was thus to review some of the fine cellular mechanisms involved in the etiopathogenesis of vitiligo, mainly focusing on the nonimmunological ones, extensively highlighted elsewhere. We took into consideration, in addition to oxidative stress, both the cause and the hallmark of the pathology, some less investigated aspects such as the role of epigenetic factors, e.g., microRNAs, of receptors of catecholamines, and the more recently recognized role of the mitochondria. Sex differences associated with vitiligo have also been investigated starting from sex hormones and the receptors through which they exert their influence. From literature analysis, a picture seems to emerge in which vitiligo can be considered not just a melanocyte-affecting disease but a systemic pathology that compromises the homeostasis of a complex tissue such as the skin, in which different cell types reside playing multifaceted physiological roles for the entire organism. The exact sequence of cellular and subcellular events associated with vitiligo is still a matter of debate. However, the knowledge of the individual biological factors implicated in vitiligo could help physicians to highlight useful innovative markers of progression and provide, in the long run, new targets for more tailored treatments based on individual manifestations of the disease.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Gianfranco Mattia
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Tonia Samela
- Clinical Psychology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Damiano Abeni
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore (UCSC), Rome, Italy
| |
Collapse
|
5
|
He MJ, Ran DL, Zhang ZY, Fu DS, He Q, Zhang HY, Mao Y, Zhao PY, Yin GW, Zhang JA. Exploring the roles and potential therapeutic strategies of inflammation and metabolism in the pathogenesis of vitiligo: a mendelian randomization and bioinformatics-based investigation. Front Genet 2024; 15:1385339. [PMID: 38660673 PMCID: PMC11039897 DOI: 10.3389/fgene.2024.1385339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Vitiligo, a common autoimmune acquired pigmentary skin disorder, poses challenges due to its unclear pathogenesis. Evidence suggests inflammation and metabolism's pivotal roles in its onset and progression. This study aims to elucidate the causal relationships between vitiligo and inflammatory proteins, immune cells, and metabolites, exploring bidirectional associations and potential drug targets. Methods Mendelian Randomization (MR) analysis encompassed 4,907 plasma proteins, 91 inflammatory proteins, 731 immune cell features, and 1400 metabolites. Bioinformatics analysis included Protein-Protein Interaction (PPI) network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Subnetwork discovery and hub protein identification utilized the Molecular Complex Detection (MCODE) plugin. Colocalization analysis and drug target exploration, including molecular docking validation, were performed. Results MR analysis identified 49 proteins, 39 immune cell features, and 59 metabolites causally related to vitiligo. Bioinformatics analysis revealed significant involvement in PPI, GO enrichment, and KEGG pathways. Subnetwork analysis identified six central proteins, with Interferon Regulatory Factor 3 (IRF3) exhibiting strong colocalization evidence. Molecular docking validated Piceatannol's binding to IRF3, indicating a stable interaction. Conclusion This study comprehensively elucidates inflammation, immune response, and metabolism's intricate involvement in vitiligo pathogenesis. Identified proteins and pathways offer potential therapeutic targets, with IRF3 emerging as a promising candidate. These findings deepen our understanding of vitiligo's etiology, informing future research and drug development endeavors.
Collapse
Affiliation(s)
- Ming-jie He
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - De-long Ran
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhan-yi Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - De-shuang Fu
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qing He
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Han-Yin Zhang
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Mao
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng-Yuan Zhao
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guang-wen Yin
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiang-an Zhang
- Department of Dermatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|