1
|
Laffoon SB, Doecke JD, Roberts AM, Vance JA, Reeves BD, Pertile KK, Rumble RL, Fowler CJ, Trounson B, Ames D, Martins R, Bush AI, Masters CL, Grieco PA, Dratz EA, Roberts BR. Analysis of plasma proteins using 2D gels and novel fluorescent probes: in search of blood based biomarkers for Alzheimer's disease. Proteome Sci 2022; 20:2. [PMID: 35081972 PMCID: PMC8790928 DOI: 10.1186/s12953-021-00185-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Australian Imaging and Biomarker Lifestyle (AIBL) study of aging is designed to aid the discovery of biomarkers. The current study aimed to discover differentially expressed plasma proteins that could yield a blood-based screening tool for Alzheimer's disease. METHODS The concentration of proteins in plasma covers a vast range of 12 orders of magnitude. Therefore, to search for medium to low abundant biomarkers and elucidate mechanisms of AD, we immuno-depleted the most abundant plasma proteins and pre-fractionated the remaining proteins by HPLC, prior to two-dimensional gel electrophoresis. The relative levels of approximately 3400 protein species resolved on the 2D gels were compared using in-gel differential analysis with spectrally resolved fluorescent protein detection dyes (Zdyes™). Here we report on analysis of pooled plasma samples from an initial screen of a sex-matched cohort of 72 probable AD patients and 72 healthy controls from the baseline time point of AIBL. RESULTS We report significant changes in variants of apolipoprotein E, haptoglobin, α1 anti-trypsin, inter-α trypsin inhibitor, histidine-rich glycoprotein, and a protein of unknown identity. α1 anti-trypsin and α1 anti-chymotrypsin demonstrated plasma concentrations that were dependent on APOE ε4 allele dose. Our analysis also identified an association with the level of Vitamin D binding protein fragments and complement factor I with sex. We then conducted a preliminary validation study, on unique individual samples compared to the discovery cohort, using a targeted LC-MS/MS assay on a subset of discovered biomarkers. We found that targets that displayed a high degree of isoform specific changes in the 2D gels were not changed in the targeted MS assay which reports on the total level of the biomarker. CONCLUSIONS This demonstrates that further development of mass spectrometry assays is needed to capture the isoform complexity that exists in theses biological samples. However, this study indicates that a peripheral protein signature has potential to aid in the characterization of AD.
Collapse
Affiliation(s)
- Scott B. Laffoon
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO and Cooperative Research Centre of Mental Health, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029 Australia
| | - Anne M. Roberts
- Department of Biochemistry, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
- Department of Neurology, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
| | | | - Benjamin D. Reeves
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Kelly K. Pertile
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Rebecca L. Rumble
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Chris J. Fowler
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Brett Trounson
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - David Ames
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Ralph Martins
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
- School of Medical Sciences, Edith Cowan University, Joondalup, WA Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - Paul A. Grieco
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Edward A. Dratz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Blaine R. Roberts
- Department of Biochemistry, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
- Department of Neurology, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
| |
Collapse
|
2
|
Salau VF, Erukainure OL, Ayeni G, Ibeji CU, Islam MS. Modulatory effect of ursolic acid on neurodegenerative activities in oxidative brain injury: An ex vivo study. J Food Biochem 2021; 45:e13597. [PMID: 33368405 DOI: 10.1111/jfbc.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Natural products-based antioxidants have been well reported for their therapeutic benefits in the treatment and management of neurodegenerative diseases. The neuroprotective effect of ursolic acid (UA) against oxidative injury was investigated in isolated rat brain. Induction of oxidative injury in isolated rat brains with 0.1 mM FeSO4 led to depleted levels of glutathione, superoxide dismutase, catalase, and ENTPDase activities, with concomitant exacerbation of malondialdehyde and nitric oxide levels, α-chymotrypsin, ATPase, and acetylcholinesterase activities. These levels and activities were significantly reversed following treatment of the brain tissues with UA. Molecular docking studies revealed strong molecular interactions between UA, catalase, and ATPase. Overall, these results indicate the neuroprotective effect of UA against oxidative injury in isolated rat brains as depicted by their ability to mitigate oxidative stress, purinergic, and cholinergic dysfunctions, with concomitant suppression of proteolytic activity. PRACTICAL APPLICATIONS: Neurodegenerative diseases are among the common diseases associated with aging and has been implicated as oxidative mediated. Natural products have received increasing recognition in their use as treatment remedy for various oxidative-mediated diseases including neurodegeneration. These natural products include plant secondary metabolites commonly known as phytochemicals. Ursolic acid is a phytochemical usually present in leafy vegetables and fruits. The present study describes the possible therapeutic mechanism of ursolic acid in the amelioration of complications linked to neurodegeneration in oxidative-mediated brain injury. These findings thus give insights into the use of natural products of plant origin in treating and managing neurodegenerative diseases, which may have little or no side effects.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry, Veritas University, Bwari, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Shan D, Wang H, Khatri P, Niu Y, Song W, Zhao S, Jiang Y, Ma Q, Liu X, Zhang R, Wang W, Yin C. The Urinary Peptidome as a Noninvasive Biomarker Development Strategy for Prenatal Screening of Down's Syndrome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:439-447. [PMID: 31381471 DOI: 10.1089/omi.2019.0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prenatal screening for Down's syndrome based on maternal age, ultrasound measures, and maternal serum biomarkers is recommended worldwide, but the false-positive rate and poor diagnostic performance of these screening tests remain problematic. Genetic analysis of cell-free DNA in maternal blood has been developed as a new prenatal screening for Down's syndrome, but it has a number of limitations, including turnaround time and cost. Prenatal screening diagnostic innovation calls for new tests that are noninvasive, accurate, and affordable. We report original observations on potential peptide biomarkers in maternal urine for screening of fetal Down's syndrome. The peptidome of urine samples from 23 pregnant women carrying Down's syndrome fetuses and 30 pregnant women carrying fetuses with normal karyotype was fractionated by weak cation exchange magnetic beads and analyzed by MALDI-TOF mass spectrometry. Levels of six peptides (m/z 1022.1, 1032.1, 1099.5, 1155.9, 1306.6, and 2365.6) were significantly altered between the case and control groups after controlling for maternal and gestational age. A classification model was constructed based on these candidate peptides that could differentiate fetuses with Down's syndrome from controls with a sensitivity of 95.7%, a specificity of 70.0%, and an area under receiver operating characteristic curves of 0.909 (95% confidence interval, 0.835-0.984). Peptide peaks at m/z 1099.5 and 1155.9 were identified as the partial sequences of alpha-1-antitrypsin and heat shock protein beta-1, respectively. These new findings support the new idea that maternal urinary peptidome offers prospects for noninvasive biomarker discovery and development for the prenatal screening of fetal Down's syndrome.
Collapse
Affiliation(s)
- Dan Shan
- Department of Perinatal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.,School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Prekshya Khatri
- Department of Perinatal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yue Niu
- Department of Perinatal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wei Song
- Department of Perinatal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Shenglong Zhao
- Department of Perinatal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yan Jiang
- Department of Perinatal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qingwei Ma
- Bioyong Technology Co., Ltd., Beijing, China
| | - Xinchao Liu
- Bioyong Technology Co., Ltd., Beijing, China
| | - Rong Zhang
- Bioyong Technology Co., Ltd., Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.,School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,School of Public Health, Shandong First Medical University, Taian, China
| | - Chenghong Yin
- Department of Perinatal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Pate KM, Murphy RM. Cerebrospinal Fluid Proteins as Regulators of Beta-amyloid Aggregation and Toxicity. Isr J Chem 2017; 57:602-612. [PMID: 29129937 DOI: 10.1002/ijch.201600078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amyloid disorders, such as Alzheimer's, are almost invariably late-onset diseases. One defining diagnostic feature of Alzheimer's disease is the deposition of beta-amyloid as extracellular plaques, primarily in the hippocampus. This raises the question: are there natural protective agents that prevent beta-amyloid from depositing, and is it loss of this protection that leads to onset of disease? Proteins in cerebrospinal fluid (CSF) have been suggested to act as just such natural protective agents. Here, we describe some of the early evidence that led to this suggestion, and we discuss, in greater detail, two CSF proteins that have garnered the bulk of the attention.
Collapse
Affiliation(s)
- Kayla M Pate
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706 (USA)
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706 (USA)
| |
Collapse
|
5
|
Gold M, Dolga AM, Koepke J, Mengel D, Culmsee C, Dodel R, Koczulla AR, Bach JP. α1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-β-induced toxicity. J Neuroinflammation 2014; 11:165. [PMID: 25245568 PMCID: PMC4177587 DOI: 10.1186/s12974-014-0165-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background One hallmark of Alzheimer disease is microglial activation. Therapeutic approaches for this neurodegenerative disease include the modulation of microglial cells. α1-antitrypsin (A1AT) has been shown to exert anti-inflammatory effects on macrophages and lung epithelial cells and an inhibition of calpain activity in neutrophil granulocytes. Nothing is known about the effect of A1AT on microglial-mediated neuroinflammation. Our aim was to investigate the effect of A1AT on amyloid-β (Aβ)- and LPS-treated microglial cells in vitro with respect to cytokine production, stress pathways, cell viability, phagocytotic abilities and the underlying mechanisms. Methods Primary microglial cells were isolated from Swiss Webster mouse embryos on embryonic day 13.5. Cytokines in the supernatants of treated primary microglial cells were analyzed with ELISAs, and accumulated nitrite was detected with Griess reagents. Intracellular stress pathways were investigated in cell lysates using western blotting. Intracellular calcium levels were detected in BV-2 microglial cells loaded with the Ca2+-sensitive (fluorescent) dye Fluo-4. Calpain activity in primary microglial cells was assessed by using a calpain activity assay. Cell viability of Aβ-treated microglial cells was analyzed using MTT assay. Phagocytosis of Aβ was evaluated with western blot analysis. Results Upon co-administration, A1AT reduced pro-inflammatory mediators induced by LPS or Aβ. Interestingly, we detected a reduction in calpain activity and in the concentration of intracellular calcium that might mediate the anti-inflammatory effects of A1AT. Inhibition of the classic activation pathways, such as phosphorylation of mitogen-activated protein kinases or activation of protein kinase A were excluded as a mechanism of A1AT-mediated effects. In addition, A1AT increased the viability of Aβ-treated microglial cells and reduced Aβ phagocytosis. Conclusions We provide evidence on the mechanism of action of A1AT on microglial-mediated neuroinflammation in vitro. Our in vitro data indicate that A1AT treatment modulates microglial cells in inflammatory conditions and that this modulation is due to an inhibition of calpain activity and intracellular calcium levels. The underlying mechanisms of the effects observed here are promising for future therapeutic strategies and should thus be further pursued in transgenic mouse models of Alzheimer disease.
Collapse
|
6
|
Narasimhan K, Lin SL, Tong T, Baig S, Ho S, Sukumar P, Biswas A, Hahn S, Bajic VB, Choolani M. Maternal serum protein profile and immune response protein subunits as markers for non-invasive prenatal diagnosis of trisomy 21, 18, and 13. Prenat Diagn 2013; 33:223-31. [PMID: 23371439 DOI: 10.1002/pd.4047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To use proteomics to identify and characterize proteins in maternal serum from patients at high-risk for fetal trisomy 21, trisomy 18, and trisomy 13 on the basis of ultrasound and maternal serum triple tests. METHODS We performed a comprehensive proteomic analysis on 23 trisomy cases and 85 normal cases during the early second trimester of pregnancy. Protein profiling along with conventional sodium dodecyl sulfate polyacrylamide gel electrophoresis/Tandem mass spectrometry analysis was carried out to characterize proteins associated with each trisomy condition and later validated using Western blot. RESULTS Protein profiling approach using surface enhanced laser desorption/ionization time-of-flight mass (SELDI-TOF/MS) spectrometry resulted in the identification of 37 unique hydrophobic proteomic features for three trisomy conditions. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by Matrix Assisted Laser Desorption Ionization - Time of Flight/Time of Flight (MALDI-TOF/TOF) and western blot, glyco proteins such as alpha-1-antitrypsin, apolipoprotein E, apolipoprotein H, and serum carrier protein transthyretin were identified as potential maternal serum markers for fetal trisomy condition. The identified proteins showed differential expression at the subunit level. CONCLUSIONS Maternal serum protein profiling using proteomics may allow non-invasive diagnostic testing for the most common trisomies and may complement ultrasound-based methods to more accurately determine pregnancies with fetal aneuploidies.
Collapse
Affiliation(s)
- Kothandaraman Narasimhan
- Diagnostic Biomarker Discovery Laboratory, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kataria J, Rukmangadachar LA, Hariprasad G, O J, Tripathi M, Srinivasan A. Two dimensional difference gel electrophoresis analysis of cerebrospinal fluid in tuberculous meningitis patients. J Proteomics 2011; 74:2194-203. [DOI: 10.1016/j.jprot.2011.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/01/2011] [Accepted: 06/18/2011] [Indexed: 12/14/2022]
|
8
|
Anagnostopoulos AK, Kolialexi A, Mavrou A, Vougas K, Papantoniou N, Antsaklis A, Kanavakis E, Fountoulakis M, Tsangaris GT. Proteomic analysis of amniotic fluid in pregnancies with Klinefelter syndrome foetuses. J Proteomics 2010; 73:943-50. [DOI: 10.1016/j.jprot.2009.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 01/07/2023]
|
9
|
Zsila F. Inhibition of heat- and chemical-induced aggregation of various proteins reveals chaperone-like activity of the acute-phase component and serine protease inhibitor human alpha(1)-antitrypsin. Biochem Biophys Res Commun 2010; 393:242-7. [PMID: 20117085 DOI: 10.1016/j.bbrc.2010.01.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
In vitro chaperone-like activity of the serpin family member and plasma acute-phase component human alpha(1)-antitrypsin (AAT) has been shown for the first time. Results of light-scattering experiments demonstrated that AAT efficiently inhibits both heat- and chemical-induced aggregation of various test proteins including alcohol dehydrogenase, aldolase, carbonic anhydrase, catalase, citrate synthase, enolase, glutathione S-transferase, l-lactate dehydrogenase, and beta(L)-crystallin. The results suggest that the unique metastable serpin architecture enables dual function, protease inhibiton as well as chaperone activity and highlight the serpin superfamily as a possible source of additional intra- and extracellular chaperones (e.g. alpha(1)-antichymotrypsin). The present finding is surprising in the light of the well-known role of mutated forms of AAT and other serpins in the pathogenesis of diseases called serpinopathies that featured with aberrant conformational transitions and consequent self-aggregation of serpin proteins.
Collapse
Affiliation(s)
- Ferenc Zsila
- Department of Molecular Pharmacology, Institute of Biomolecular Chemistry, Chemical Research Center, Budapest, Pusztaszeri út, Hungary.
| |
Collapse
|
10
|
Nielsen HM, Veerhuis R, Holmqvist B, Janciauskiene S. Binding and uptake of A beta1-42 by primary human astrocytes in vitro. Glia 2009; 57:978-88. [PMID: 19062178 DOI: 10.1002/glia.20822] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clearance of the amyloid-beta peptide (A beta) as a remedy for Alzheimer's disease (AD) is a major target in on-going clinical trials. In vitro studies confirmed that A beta is taken up by rodent astrocytes, but knowledge on human astrocyte-mediated A beta clearance is sparse. Therefore, by means of flow cytometry and confocal laser scanning microscopy (CLSM), we evaluated the binding and internalization of A beta1-42 by primary human fetal astrocytes and adult astrocytes, isolated from nondemented subjects (n = 8) and AD subjects (n = 6). Furthermore, we analyzed whether alpha1-antichymotrypsin (ACT), which is found in amyloid plaques and can influence A beta fibrillogenesis, affects the A beta uptake by human astrocytes. Upon over night exposure of astrocytes to FAM-labeled A beta1-42 (10 microM) preparations, (80.7 +/- 17.7)% fetal and (52.9 +/- 20.9)% adult A beta-positive astrocytes (P = 0.018) were observed. No significant difference was found in A beta1-42 uptake between AD and non-AD astrocytes, and no influence of ApoE genotype on A beta1-42 uptake was observed in any group. There was no difference in the percentage of A beta-positive cells upon exposure to A beta1-42 (10 microM) combined with ACT (1,000:1, 100:1, and 10:1 molar ratio), versus A beta1-42 alone. CLSM revealed binding of A beta1-42 to the cellular surfaces and cellular internalization of smaller A beta1-42 fragments. Under these conditions, there was no increase in cellular release of the proinflammatory chemokine monocyte-chemoattractant protein 1, as compared with nontreated control astrocytes. Thus, primary human astrocytes derived from different sources can bind and internalize A beta1-42, and fetal astrocytes were more efficient in A beta1-42 uptake than adult astrocytes.
Collapse
Affiliation(s)
- Henrietta M Nielsen
- Department of Clinical Chemistry, Pathology, The Alzheimer Centre, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Kolialexi A, Tsangaris GT, Papantoniou N, Anagnostopoulos AK, Vougas K, Bagiokos V, Antsaklis A, Mavrou A. Application of proteomics for the identification of differentially expressed protein markers for Down syndrome in maternal plasma. Prenat Diagn 2008; 28:691-8. [PMID: 18551720 DOI: 10.1002/pd.2040] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Despite the large impact of ultrasonographic and biochemical markers on prenatal screening, the ability to accurately diagnose Down syndrome (DS) is still limited and better diagnostic testing is needed. METHODS Plasma from 8 women carrying a DS foetus and 12 with non-DS foetuses matched for gestational age, maternal age and ethnicity, in the second trimester of pregnancy, was analysed by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in order to identify biomarkers for DS. RESULTS Gel comparison revealed nine proteins differentially expressed in maternal plasma in women with DS foetuses. Eight proteins, transthyretin (TTHY), ceruloplasmin (CERU), afamin (AFAM), alpha-1-microglobulin (AMBP), apolipoprotein E (APOE), serum amyloid P-component (SAMP), histidine-rich glycoprotein (HRG) and alpha-1-antitrypsin (A1AT) were up-regulated and one, clusterin (CLUS), down-regulated. All nine proteins are known to be involved in foetal growth and development. APOE, SAMP, AFAM and CLUS are associated with the DS phenotype. Western blot and densitometric analysis of APOE and SAMP confirmed the increase of both proteins by 19 and 48% respectively. CONCLUSIONS All differentially expressed proteins are candidate biomarkers for DS, providing opportunities for the development of non-invasive prenatal diagnosis. As these are preliminary findings, follow-up experiments are needed for their evaluation.
Collapse
|