1
|
Keleş D, Sipahi M, İnanç-Sürer Ş, Djamgoz MB, Oktay G. Tetracaine downregulates matrix metalloproteinase activity and inhibits invasiveness of strongly metastatic MDA-MB-231 human breast cancer cells. Chem Biol Interact 2023; 385:110730. [PMID: 37806380 DOI: 10.1016/j.cbi.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Tetracaine, a long-acting amino ester-type local anesthetic, prevents the initiation and propagation of action potentials by reversibly blocking voltage-gated sodium channels (VGSCs). These channels, which are highly expressed in several carcinomas (e.g. breast, prostate, colon and lung cancers) have been implicated in promoting metastatic behaviours. Recent evidence suggests that local anesthetics can suppress cancer progression. In this paper, we aimed to explore whether tetracaine would reduce the invasive characteristics of breast cancer cells. In a comparative approach, we used two cell lines of contracting metastatic potential: MDA-MB-231 (strongly metastatic) and MCF-7 (weakly metastatic). Tetracaine (50 μM and 75 μM) did not affect the proliferation of both MDA-MB-231 and MCF-7 cells. Importantly, tetracaine suppressed the migratory, invasive, and adhesive capacities of MDA-MB-231 cells; there was no effect on the motility of MCF-7 cells. Tetracaine treatment also significantly decreased the expression and activity levels of MMP-2 and MMP-9, whilst increasing TIMP-2 expression in MDA-MB-231 cells. On the other hand, VGSC α/Nav1.5 and VGSC-β1 mRNA and protein expression levels were not affected. We conclude that tetracaine has anti-invasive effects on breast cancer cells and may be exploited clinically, for example, in surgery and/or in combination therapies.
Collapse
Affiliation(s)
- Didem Keleş
- Izmir University of Economics, Vocational School of Health Services, Medical Laboratory Techniques, 35330, Balcova, Izmir, Turkey; Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Murat Sipahi
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Şeniz İnanç-Sürer
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey
| | - Mustafa Ba Djamgoz
- Imperial College London, Department of Life Sciences, South Kensington Campus, SW7 2AZ, London, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Gülgün Oktay
- Dokuz Eylül University, School of Medicine, Department of Medical Biochemistry, 35340, Inciralti, Izmir, Turkey.
| |
Collapse
|
2
|
Wang LL, Zhang B, Zheng MH, Xie YZ, Wang CJ, Jin JY. Matrix Metalloproteinases (MMPs) in Targeted Drug Delivery: Synthesis of a Potent and Highly Selective Inhibitor against Matrix Metalloproteinase- 7. Curr Top Med Chem 2021; 20:2459-2471. [PMID: 32703131 DOI: 10.2174/1568026620666200722104928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that play a key role in both physiological and pathological tissue degradation. MMPs have reportedly shown great potentials in the degradation of the Extracellular Matrix (ECM), have shown great potentials in targeting bioactive and imaging agents in cancer treatment. MMPs could provoke Epithelial to Mesenchymal Transition (EMT) of cancer cells and manipulate their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Therefore, targeting and particularly inhibiting MMPs within the tumor microenvironment is an effective strategy for cancer treatment. Based on this idea, different MMP inhibitors (MMPIs) have been developed to manipulate the tumor microenvironment towards conditions appropriate for the actions of antitumor agents. Studies are ongoing to improve the selectivity and specificity of MMPIs. Structural optimization has facilitated the discovery of selective inhibitors of the MMPs. However, so far no selective inhibitor for MMP-7 has been proposed. AIMS This study aims to comprehensively review the potentials and advances in applications of MMPs particularly MMP-7 in targeted cancer treatment approaches with the main focus on targeted drug delivery. Different targeting strategies for manipulating and inhibiting MMPs for the treatment of cancer are discussed. MMPs are upregulated at all stages of expression in cancers. Different MMP subtypes have shown significant targeting applicability at the genetic, protein, and activity levels in both physiological and pathophysiological conditions in a variety of cancers. The expression of MMPs significantly increases at advanced cancer stages, which can be used for controlled release in cancers in advance stages. METHODS Moreover, this study presents the synthesis and characteristics of a new and highly selective inhibitor against MMP-7 and discusses its applications in targeted drug delivery systems for therapeutics and diagnostics modalities. RESULTS Our findings showed that the structure of the inhibitor P3' side chains play the crucial role in developing an optimized MMP-7 inhibitor with high selectivity and significant degradation activities against ECM. CONCLUSION Optimized NDC can serve as a highly potent and selective inhibitor against MMP-7 following screening and optimization of the P3' side chains, with a Ki of 38.6 nM and an inhibitory selectivity of 575 of MMP-7 over MMP-1.
Collapse
Affiliation(s)
- Ling-Li Wang
- Centre of Chemical Biology, Department of Chemistry, Yanbian University, Yanji City, Jilin Province, 133002, China,National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China
| | - Bing Zhang
- Department of Nephrology, Central Hospital of Jiamusi, Heilongjiang Province 154002, China
| | - Ming-Hua Zheng
- Centre of Chemical Biology, Department of Chemistry, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Yu-Zhong Xie
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China,College of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chang-Jiang Wang
- Department of Nephrology, Central Hospital of Jiamusi, Heilongjiang Province 154002, China
| | - Jing-Yi Jin
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China
| |
Collapse
|
3
|
Shekhter AB, Balakireva AV, Kuznetsova NV, Vukolova MN, Litvitsky PF, Zamyatnin AA. Collagenolytic Enzymes and their Applications in Biomedicine. Curr Med Chem 2019; 26:487-505. [PMID: 28990520 DOI: 10.2174/0929867324666171006124236] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 01/31/2023]
Abstract
Nowadays, enzymatic therapy is a very promising line of treatment for many different diseases. There is a group of disorders and conditions, caused by fibrotic and scar processes and associated with the excessive accumulation of collagen that needs to be catabolized to normalize the connective tissue content. The human body normally synthesizes special extracellular enzymes, matrix metalloproteases (MMPs) by itself. These enzymes can cleave components of extracellular matrix (ECM) and different types of collagen and thus maintain the balance of the connective tissue components. MMPs are multifunctional enzymes and are involved in a variety of organism processes. However, under pathological conditions, the function of MMPs is not sufficient, and these enzymes fail to deal with disease. Thus, medical intervention is required. Enzymatic therapy is a very effective way of treating such collagen-associated conditions. It involves the application of exogenous collagenolytic enzymes that catabolize excessive collagen at the affected site and lead to the successful elimination of disease. Such collagenolytic enzymes are synthesized by many organisms: bacteria, animals (especially marine organisms), plants and fungi. The most studied and commercially available are collagenases from Clostridium histolyticum and from the pancreas of the crab Paralithodes camtschatica, due to their ability to effectively hydrolyse human collagen without affecting other tissues, and their wide pH ranges of collagenolytic activity. In the present review, we summarize not only the data concerning existing collagenase-based medications and their applications in different collagen-related diseases and conditions, but we also propose collagenases from different sources for their potential application in enzymatic therapy.
Collapse
Affiliation(s)
- Anatoly B Shekhter
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Natalia V Kuznetsova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Marina N Vukolova
- Sechenov First Moscow State Medical University, Department of Pathophysiology, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Petr F Litvitsky
- Sechenov First Moscow State Medical University, Department of Pathophysiology, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8, Moscow, 119991, Russian Federation.,Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russian Federation
| |
Collapse
|
4
|
Bozhenko VK, Stanojevic US, Trotsenko ID, Zakharenko MV, Kiseleva YY, Solodkiy VA. [Comparison of matrix proteinase mRNA expression in morphologically normal, neoplastic, and metastatic colon tissue and colon biopsies from healthy donors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:46-52. [PMID: 29460834 DOI: 10.18097/pbmc20186401046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinases (MMPs) responsible for the extracellular matrix remodeling, the activation of various growth factors, and angiogenesis play an important role in the colorectal cancer (CRC) development. In the present work the comparative analysis of MMP-7, -8, -9, and -11 mRNA as well mRNA of the Ki-67 proliferation marker in tissue samples obtained from CRC patients and healthy individuals. Employing the real time PCR method the expression levels of several MMPs (MMP-7, -8, -9, and -11) and cell proliferation marker, Ki-67, were simultaneously measured in 256 tissue samples obtained from 112 patients with CRC: 112 samples of the primary tumor (CRC), 112 samples of the most distant border of morphologically normal colonic mucosa (MNT), 16 samples of liver metastases) and from 16 healthy volunteers who underwent colonoscopy and biopsy. The expression of both MMPs studied and Ki-67 was found to be elevated in CRC primary tumors and liver metastases compared with the normal mucosa. CRC tumor and metastatic cells exhibited similar proliferative activity. The metastases are characterized by the highest cross-correlation of MMPs among tissue types tested. For the first time it was shown that normal mucosa from healthy individuals and CRC patients varied in the MMP-8 expression level. They also had dissimilar MMP correlation patterns thus suggesting that epithelial cells adjusted to CRC tumor differ from mucosal epithelial cells of healthy individuals.
Collapse
Affiliation(s)
- V K Bozhenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - U S Stanojevic
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - I D Trotsenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | - M V Zakharenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - Y Y Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - V A Solodkiy
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| |
Collapse
|
5
|
Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J Control Release 2017; 259:62-75. [PMID: 28153760 DOI: 10.1016/j.jconrel.2017.01.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
While commonly known for degradation of the extracellular matrix, matrix metalloproteinases (MMPs) exhibit broad potential for use in targeting of bioactive and imaging agents in cancer treatment. MMPs are upregulated at all stages of expression in cancers. A comprehensive analysis of published literature on expression of all MMP subtypes at the genetic, protein, and activity levels in normal and diseased tissues indicate targeting applicability in a variety of cancers. This expression significantly increases at advanced cancer stages, providing an improved opportunity for controlled release in higher-stage patients. Since MMPs are integral at every stage of metastasis, MMP roles in cancer are discussed with a focus on MMP distribution and mobility within cells and tumors for cancer targeting applications. Several strategies for MMP utilization in targeting - such as matrix degradation, MMP cleavage, MMP binding, and MMP-induced environmental changes - are addressed.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Nithya B Subrahmanyam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Bengi G, Keles D, Topalak Ö, Yalçin M, Kiyak R, Oktay G. Expressions of TIMP-1, COX-2 and MMP-7 in Colon Polyp and Colon Cancer. Euroasian J Hepatogastroenterol 2016; 5:74-79. [PMID: 29201696 PMCID: PMC5578530 DOI: 10.5005/jp-journals-10018-1138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/05/2015] [Indexed: 01/13/2023] Open
Abstract
Objective We aimed to investigate the relationship of expression of matrix metalloproteinase-7 (MMP-7), tissue inhibitor of metalloproteinase-1 (TIMP-1) and cyclooxygenase-2 (COX-2) in colon cancer and its predecessor colon polyp. Materials and methods This study included 29 patients with colon polyp, 19 patients with colon cancer and 65 healthy control subjects. The expressions of MMP-7, TIMP-1 and COX-2 were investigated by real time-polymerase chain reaction (RT-PCR). Results The expressions of TIMP-1, COX-2 and MMP-7 levels were significantly higher in polyp tissue compared to normal tissue (p = 0.024, p < 0.001, p = 0.009, respectively). Expression of TIMP-1, COX-2 and MMP-7 in cancer tissues were higher than both normal tissue and polyp tissue (p = 0.009 and p = 0.001; p < 0.001 and p < 0.001; p = 0.029 and p = 0.008, respectively). In the cancer group, no significant relationship was detected between metastasis and MMP-7, TIMP-1 and COX-2 expressions (p > 0.05). In the polyp tissues, no significant relationship was detected between the histologic type and size of polyps and MMP-7, TIMP-1 and COX-2 levels (p > 0.05). The areas under the receiver operating characteristic (ROC) curve for the cancer group were 0.821 for TIMP-1, 0.888 for COX-2, and 0.880 for MMP-7 (p = 0 < 0.001). Conclusion A role and implication of expressions of MMP-7, COX-2 and TIMP-1 in colon cancer is predicted. How to cite this article Bengi G, Keles D, Topalak Ö, Yalçin M, Kiyak R, Oktay G. Expressions of TIMP-1, COX-2 and MMP-7 in Colon Polyp and Colon Cancer. Euroasian J Hepato-Gastroenterol 2015;5(2):74-79.
Collapse
Affiliation(s)
- Gösel Bengi
- Department of Gastroenterology, Dokuz Eylul University Hospital, izmir, Turkey
| | - Didem Keles
- Department of Biochemistry, Dokuz Eylul University Hospital, izmir, Turkey
| | - Ömer Topalak
- Department of Gastroenterology, Dokuz Eylul University Hospital, izmir, Turkey
| | - Mustafa Yalçin
- Department of Gastroenterology, Dokuz Eylul University Hospital, izmir, Turkey
| | - Rabia Kiyak
- Department of Biochemistry, Dokuz Eylul University Hospital, izmir, Turkey
| | - Gülgün Oktay
- Department of Biochemistry, Dokuz Eylul University Hospital, izmir, Turkey
| |
Collapse
|