1
|
Freitag T, Bieger R, Kiefer H, Dornacher D, Reichel H, Ignatius A, Dürselen L. Biomechanics of a calcar loading and a shortened tapered femoral stem: Comparative in-vitro testing of primary stability and strain distribution. J Exp Orthop 2021; 8:74. [PMID: 34491456 PMCID: PMC8423873 DOI: 10.1186/s40634-021-00388-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose The most common femoral short stems available on the market can, in principle, be divided with regard to their anchoring concepts into a calcar loading and a shortened tapered design. The purpose of this study was to compare the primary stability and stress-shielding of two short stems, which correspond to these two different anchoring concepts. Methods Using seven paired fresh frozen human cadaver femurs, primary axial and rotational stabilities under dynamic load (100–1600 N) were evaluated by miniature displacement transducers after 100,000 load cycles. Changes in cortical strains were measured before and after implantation of both stem types to detect implant-specific load transmission and possible stress-shielding effects. Results Reversible and irreversible micromotions under dynamic load displayed no significant differences between the two implants. Implantation of either stem types resulted in a reduction of cortical strains in the proximal femur, which was less pronounced for the calcar loading implant. Conclusions Both short stems displayed comparable micromotions far below the critical threshold above which osseointegration may disturbed. Neither short stem could avoid proximal stress-shielding. This effect was less pronounced for the calcar loading short stem, which corresponds to a more physiological load transmission.
Collapse
Affiliation(s)
- Tobias Freitag
- Department of Orthopaedic Surgery, Ulm University Medical Centre, Oberer Eselsberg 45, 89081, Ulm, Germany.
| | - Ralf Bieger
- Department of Orthopaedic Surgery, Ulm University Medical Centre, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Hartmuth Kiefer
- Department of Trauma and Orthopaedic Surgery, Lukas Hospital, Buende, Germany
| | - Daniel Dornacher
- Department of Orthopaedic Surgery, Ulm University Medical Centre, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Heiko Reichel
- Department of Orthopaedic Surgery, Ulm University Medical Centre, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University Medical Centre, Helmholtzstr. 14, 89081, Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University Medical Centre, Helmholtzstr. 14, 89081, Ulm, Germany
| |
Collapse
|
2
|
Influence of different anteversion alignments of a cementless hip stem on primary stability and strain distribution. Clin Biomech (Bristol, Avon) 2020; 80:105167. [PMID: 32977213 DOI: 10.1016/j.clinbiomech.2020.105167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Stem anteversion in total hip arthroplasty is well known to have a high impact on dislocation, but empirical data regarding the clinical and biomechanical influence is lacking. Therefore, we evaluated the impact of different anteversion alignments on the primary stability and strain distribution of a cementless stem. METHODS The cementless CLS Spotorno stem was implanted in 3 different groups (each group n = 6, total n = 21) with different anteversion alignments: reference anteversion (8°), +15° torsion in anteversion (+23°), -15° torsion in retroversion (-7°) using composite femurs (Sawbones). Primary stability was determined by 3-dimensional micromotions using a dynamic loading procedure simulating walking on level ground. Additionally, surface strains were registered before and after stem insertion in the 3 different groups, using one composite femur for each group (total n = 3). FINDINGS The micromotion measurements did not show a significant difference between the 3 evaluated alignments. Moreover, determination of the strain distribution did also not reveal an obvious difference. INTERPRETATION This biomechanical study simulating walking on level ground indicates that there is no considerable influence of stem ante-/retroversion variation (±15°) on the initial stability and strain distribution when evaluating the cementless CLS Spotorno in composite femora.
Collapse
|
3
|
Varus malalignment of cementless hip stems provides sufficient primary stability but highly increases distal strain distribution. Clin Biomech (Bristol, Avon) 2018; 58:14-20. [PMID: 30005422 DOI: 10.1016/j.clinbiomech.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/24/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Varus position of cementless stems is a common malalignment in total hip arthroplasty. Clinical studies have reported a low rate of aseptic loosening but an increased risk for thigh pain. This in vitro study aimed to evaluate these clinical observations from a biomechanical perspective. METHODS A conventional cementless stem (CLS Spotorno) was implanted in a regular, straight (size 13.75) as well as in a varus position (size 11.25) in 6 composite femora (Sawbones), respectively. Primary stability was assessed by recording 3-dimensional micromotions under dynamic load bearing conditions and stress shielding was evaluated by registering the surface strain before and after stem insertion. FINDINGS Primary stability for stems in varus malposition revealed significantly lower micromotions (p < 0.05) for most regions compared to stems in neutral position. The greatest difference was observed at the tip of the stem where the straight aligned implants exceeded the critical upper limit for osseous integration of 150 μm. The surface strains for the varus aligned stems revealed a higher load transmission to the femur, resulting in a clearly altered strain distribution. INTERPRETATION This biomechanical study confirms the clinical findings of a good primary stability of cementless stems in a varus malposition, but impressively demonstrates the altered load transmission with the risk for postoperative thigh pain.
Collapse
|
4
|
Schwarz E, Reinisch G, Brandauer A, Aharinejad S, Scharf W, Trieb K. Load transfer and periprosthetic fractures after total hip arthoplasty: Comparison of periprosthetic fractures of femora implanted with cementless distal-load or proximal-load femoral components and measurement of the femoral strain at the time of implantation. Clin Biomech (Bristol, Avon) 2018; 54:137-142. [PMID: 29587147 DOI: 10.1016/j.clinbiomech.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/07/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Little is known about the causes and mechanisms underlying periprosthetic fractures around femoral components particularly in relation to the stem design. In an in vitro study 20 pairs of fresh cadaveric femora were loaded to fracture axially and transversally. FINDINGS When proximal femoral strain was measured at the time of impaction of cementless stems the load transfer was determined by the underlying anatomy rather than by the shape of the stem, so that the so-called "load transfer" properties - proximal or distal - ascribed to stem designs are a myth. The axial-load and the transverse-load model were then exposed to loads to failure (fracture) and showed a biphasic pattern throughout independent of the impact direction. In the second phase, the fracture phase proper, the bone behaved like a brittle solid. Failure occurred very rapidly within less than 5 milliseconds. The forces to failure were between 2 and 11 kN. Most of the fractures (82.5%) occurred above the stem tip. INTERPRETATION Note that the study was confined to early preosteointegration fractures. Neither the stem design nor the impact direction, i.e. on the knee or on the side of the hip, was related to the fracture morphology.
Collapse
Affiliation(s)
- E Schwarz
- Trauma Unit, Hanusch-Krankenhaus, Vienna, Austria
| | - G Reinisch
- Biomechanische Forschungs-Gesellschaft m.b.H., Vienna, Austria; Department of Micro-Technique and Precision Engineering, Vienna University of Technology, Austria
| | - A Brandauer
- Department of Micro-Technique and Precision Engineering, Vienna University of Technology, Austria
| | - S Aharinejad
- Anatomy and Cellular Biology Division, Vienna Medical School, Austria
| | - W Scharf
- Trauma Unit, Hanusch-Krankenhaus, Vienna, Austria
| | - K Trieb
- Department of Orthopedics, Klinikum Wels-Grieskirchen, Austria.
| |
Collapse
|
5
|
Frame JC, Wheel MA, Riches PE. A numerical investigation and experimental verification of size effects in loaded bovine cortical bone. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2903. [PMID: 28558162 DOI: 10.1002/cnm.2903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we present 2- and 3-dimensional finite element-based numerical models of loaded bovine cortical bone that explicitly incorporate the dominant microstructural feature: the vascular channel or Haversian canal system. The finite element models along with the representation of the microstructure within them are relatively simple: 2-dimensional models, consisting of a structured mesh of linear elastic planar elements punctuated by a periodic distribution of circular voids, are used to represent beam samples of cortical bone in which the channels are orientated perpendicular to the sample major axis, while 3-dimensional models, using a corresponding mesh of equivalent solid elements, represent those samples in which the canals are aligned with the axis. However, these models are exploited in an entirely novel approach involving the representation of material samples of different sizes and surface morphology. The numerical results obtained for the virtual material samples when loaded in bending indicate that they exhibit size effects not forecast by either classical (Cauchy) or more generalized elasticity theories. However, these effects are qualitatively consistent with those that we observed in a series of carefully conducted experiments involving the flexural testing of bone samples of different sizes. Encouraged by this qualitative agreement, we have identified appropriate model parameters, primarily void volume fraction but also void separation and matrix modulus by matching the computed size effects to those we observed experimentally. Interestingly, the parameter choices that provide the most suitable match of these effects broadly concur with those we actually observed in cortical bone.
Collapse
Affiliation(s)
- J C Frame
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - M A Wheel
- Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
| | - P E Riches
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| |
Collapse
|
6
|
Fottner A, Woiczinski M, Kistler M, Schröder C, Schmidutz TF, Jansson V, Schmidutz F. Influence of undersized cementless hip stems on primary stability and strain distribution. Arch Orthop Trauma Surg 2017; 137:1435-1441. [PMID: 28865042 DOI: 10.1007/s00402-017-2784-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Undersizing of cementless hip stems is a risk factor for aseptic loosening and early subsidence. The purpose of this study was to evaluate the effects of undersized stems and determine whether a biomechanical study can predict the clinical results. MATERIALS AND METHODS Three consecutive sizes of a clinically proven stem (CLS Spotorno) were implanted into six composite femora (size large, Sawbones®), respectively. According to the Canal Fill Index (CFI), two stems (size 11.25 and 12.5) were undersized (CFI < 80%) and one stem (size 13.75) had an appropriate size (CFI > 80%). The primary stability was evaluated by measurement of 3-dimensional (3D)-micromotions under physiological adapted load and surface strains were recorded before and after implantation to detect stress-shielding processes. RESULTS Both undersized stems revealed significantly higher micromotions in all regions compared to the appropriate stem. The highest micromotions were registered at the distal tip of the three stem sizes. The changes in surface strain did not show a significant difference between the three stem sizes, but the highest strain reduction was observed proximally indicating a tendency for stress shielding. CONCLUSIONS This study confirms the clinical assumption that undersized stem result in a significantly reduced primary stability. Furthermore, in vitro studies allow to determine the effects of undersizing and stress shielding processes.
Collapse
Affiliation(s)
- Andreas Fottner
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Campus Grosshadern, Marchioninistraße 15, 81377, Munich, Germany.
| | - Matthias Woiczinski
- Laboratory for Biomechanics and Experimental Orthopedics, Grosshadern Medical Center, University of Munich (LMU), Munich, Germany
| | - Manuel Kistler
- Laboratory for Biomechanics and Experimental Orthopedics, Grosshadern Medical Center, University of Munich (LMU), Munich, Germany
| | - Christian Schröder
- Laboratory for Biomechanics and Experimental Orthopedics, Grosshadern Medical Center, University of Munich (LMU), Munich, Germany
| | - Tobias F Schmidutz
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Volkmar Jansson
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Campus Grosshadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Florian Schmidutz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Campus Grosshadern, Marchioninistraße 15, 81377, Munich, Germany.,BG Trauma Center, Eberhard Karls University Tübingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany
| |
Collapse
|
7
|
Arndt C, Görgner A, Klöhn C, Scholz R, Voigt C. Shear stress and von Mises stress distributions in the periphery of an embedded acetabular cup implant during impingement. BIOMED ENG-BIOMED TE 2017; 62:279-288. [PMID: 27505082 DOI: 10.1515/bmt-2016-0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/05/2016] [Indexed: 11/15/2022]
Abstract
As literature implies, daily activities of total hip arthroplasty (THA) patients may include movements prone to implant-implant impingement. Thus, high shear stresses may be induced at the acetabular implant-bone interface, increasing the risk of implant loosening. The aim of the current study is to determine whether or not impingement events may pose an actual risk to acetabular periprosthetic bone. An existing experimental workflow was augmented to cover complete three-dimensional strain gage measurement. von Mises and shear stresses were calculated from 1620 measured strain values, collected around a hemispherical cup implant at 2.5 mm interface distance during worst-case impingement loading. A shear stress criterion for acetabular periprosthetic bone was derived from the literature. At the impingement site, magnitudes of von Mises stress amount to 0.57 MPa and tilting shear stress amount to -0.3 MPa at 2.5 mm interface distance. Conclusion can be drawn that worst-case impingement events are unlikely to pose a risk of bone material failure in the periphery around fully integrated cementless acetabular hip implants in otherwise healthy THA patients. As numerical predictions in the literature suggested, it can now be confirmed that impingement moments are unlikely to cause acetabular implant-bone interface fixation failures.
Collapse
|
8
|
Influence of different sizes of composite femora on the biomechanical behavior of cementless hip prosthesis. Clin Biomech (Bristol, Avon) 2017; 41:60-65. [PMID: 27960138 DOI: 10.1016/j.clinbiomech.2016.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 11/12/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND For the biomechanical evaluation of cementless stems different sizes of composite femurs have been used in the literature. However, the impact of different specimen sizes on test results is unknown. METHODS To determine the potential effect of femur size the biomechanical properties of a conventional stem (CLS Spotorno) were examined in 3 different sizes (small, medium and large composite Sawbones®). Primary stability was tested under physiologically adapted dynamic loading conditions measuring 3-dimensional micromotions. For the small composite femur the dynamic load needed to be adapted since fractures occurred when reaching 1700N. Additionally, surface strain distribution was recorded before and after implantation to draw conclusions about the tendency for stress shielding. FINDINGS All tested sizes revealed similar micromotions only reaching a significant different level at one measurement point. The highest micromotions were observed at the tip of the stems exceeding the limit for osseous integration of 150μm. Regarding strain distribution the highest strain reduction after implantation was registered in all sizes at the level of the lesser trochanter. INTERPRETATION Specimen size seems to be a minor influence factor for biomechanical evaluation of cementless stems. However, the small composite femur is less suitable for biomechanical testing since this size failed under physiological adapted loads. For the CLS Spotorno osseous integration is unlikely at the tip of the stem and the tendency for stress shielding is the highest at the level of the lesser trochanter.
Collapse
|