1
|
Bajelan S, Sparrow WAT, Begg R. The ankle dorsiflexion kinetics demand to increase swing phase foot-ground clearance: implications for assistive device design and energy demands. J Neuroeng Rehabil 2024; 21:105. [PMID: 38907255 PMCID: PMC11191291 DOI: 10.1186/s12984-024-01394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The ankle is usually highly effective in modulating the swing foot's trajectory to ensure safe ground clearance but there are few reports of ankle kinetics and mechanical energy exchange during the gait cycle swing phase. Previous work has investigated ankle swing mechanics during normal walking but with developments in devices providing dorsiflexion assistance, it is now essential to understand the minimal kinetic requirements for increasing ankle dorsiflexion, particularly for devices employing energy harvesting or utilizing lighter and lower power energy sources or actuators. METHODS Using a real-time treadmill-walking biofeedback technique, swing phase ankle dorsiflexion was experimentally controlled to increase foot-ground clearance by 4 cm achieved via increased ankle dorsiflexion. Swing phase ankle moments and dorsiflexor muscle forces were estimated using AnyBody modeling system. It was hypothesized that increasing foot-ground clearance by 4 cm, employing only the ankle joint, would require significantly higher dorsiflexion moments and muscle forces than a normal walking control condition. RESULTS Results did not confirm significantly increased ankle moments with augmented dorsiflexion, with 0.02 N.m/kg at toe-off reducing to zero by the end of swing. Tibialis Anterior muscle force incremented significantly from 2 to 4 N/kg after toe-off, due to coactivation with the Soleus. To ensure an additional 4 cm mid swing foot-ground clearance, an estimated additional 0.003 Joules/kg is required to be released immediately after toe-off. CONCLUSION This study highlights the interplay between ankle moments, muscle forces, and energy demands during swing phase ankle dorsiflexion, offering insights for the design of ankle assistive technologies. External devices do not need to deliver significantly greater ankle moments to increase ankle dorsiflexion but, they should offer higher mechanical power to provide rapid bursts of energy to facilitate quick dorsiflexion transitions before reaching Minimum Foot Clearance event. Additionally, for ankle-related bio-inspired devices incorporating artificial muscles or humanoid robots that aim to replicate natural ankle biomechanics, the inclusion of supplementary Tibialis Anterior forces is crucial due to Tibialis Anterior and Soleus co-activation. These design strategies ensures that ankle assistive technologies are both effective and aligned with the biomechanical realities of human movement.
Collapse
Affiliation(s)
- Soheil Bajelan
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | - W A Tony Sparrow
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Rezaul Begg
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
2
|
Wouda MF, Løtveit MF, Bengtson EI, Strøm V. The relationship between balance control and thigh muscle strength and muscle activity in persons with incomplete spinal cord injury. Spinal Cord Ser Cases 2024; 10:7. [PMID: 38418466 PMCID: PMC10902359 DOI: 10.1038/s41394-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVES A spinal cord injury (SCI) can compromise the ability to maintain sufficient balance control during activities in an upraised position. The objective of the study was to explore the relationship between balance control and muscle strength and muscle activation in the lower extremities in persons with incomplete SCI (iSCI). SETTING Sunnaas Rehabilitation Hospital, Norway. METHODS Thirteen men and two women with iSCI and 15 healthy, matched controls were included. Performance of the Berg Balance Scale (BBS) short version (7 items) was used to indicate balance control. Maximal voluntary contraction (MVC) was performed to measure isometric muscle strength in thigh muscles (knee extension/flexion), while surface electromyography (EMG) was measured from M. Vastus Lateralis and M. Biceps Femoris. The relative activation of each muscle during each of the BBS tasks was reported as the percentage of the maximal activation during the MVC (%EMGmax). RESULTS The iSCI participants had a significantly lower BBS sum score and up to 40% lower muscle strength in knee- flexion and extension compared to the matched healthy controls. They also exhibited a significantly higher %EMGmax, i.e. a higher muscle activation, during most of the balance tests. Univariate regression analysis revealed a significant association between balance control and mean values of %EMGmax in Biceps Femoris, averaged over the seven BBS tests. CONCLUSIONS The participants with iSCI had poorer balance control, reduced thigh muscle strength and a higher relative muscle activation in their thigh muscles, during balance-demanding activities.
Collapse
Affiliation(s)
- Matthijs Ferdinand Wouda
- Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway.
| | - Marte Fosvold Løtveit
- Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Vegard Strøm
- Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
3
|
Sun SY, Giszter SF, Harkema SJ, Angeli CA. Modular organization of locomotor networks in people with severe spinal cord injury. Front Neurosci 2022; 16:1041015. [PMID: 36570830 PMCID: PMC9768556 DOI: 10.3389/fnins.2022.1041015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Previous studies support modular organization of locomotor circuitry contributing to the activation of muscles in a spatially and temporally organized manner during locomotion. Human spinal circuitry may reorganize after spinal cord injury; however, it is unclear if reorganization of spinal circuitry post-injury affects the modular organization. Here we characterize the modular synergy organization of locomotor muscle activity expressed during assisted stepping in subjects with complete and incomplete spinal cord injury (SCI) of varying chronicity, before any explicit training regimen. We also investigated whether the synergy characteristics changed in two subjects who achieved independent walking after training with spinal cord epidural stimulation. Methods To capture synergy structures during stepping, individuals with SCI were stepped on a body-weight supported treadmill with manual facilitation, while electromyography (EMGs) were recorded from bilateral leg muscles. EMGs were analyzed using non-negative matrix factorization (NMF) and independent component analysis (ICA) to identify synergy patterns. Synergy patterns from the SCI subjects were compared across different clinical characteristics and to non-disabled subjects (NDs). Results Results for both NMF and ICA indicated that the subjects with SCI were similar among themselves, but expressed a greater variability in the number of synergies for criterion variance capture compared to NDs, and weaker correlation to NDs. ICA yielded a greater number of muscle synergies than NMF. Further, the clinical characteristics of SCI subjects and chronicity did not predict any significant differences in the spatial synergy structures despite any neuroplastic changes. Further, post-training synergies did not become closer to ND synergies in two individuals. Discussion These findings suggest fundamental differences between motor modules expressed in SCIs and NDs, as well as a striking level of spatial and temporal synergy stability in motor modules in the SCI population, absent the application of specific interventions.
Collapse
Affiliation(s)
- Soo Yeon Sun
- Department of Physical Therapy, Alvernia University, Reading, PA, United States
| | - Simon F. Giszter
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States,Frazier Rehab Institute, University of Louisville Health, Louisville, KY, United States
| | - Claudia A. Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States,Frazier Rehab Institute, University of Louisville Health, Louisville, KY, United States,Department of Bioengineering, University of Louisville, Louisville, KY, United States,*Correspondence: Claudia A. Angeli,
| |
Collapse
|
4
|
Automatic Assessment of Abdominal Exercises for the Treatment of Diastasis Recti Abdominis Using Electromyography and Machine Learning. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diastasis Recti Abdominis (DRA) is a medical condition in which the two sides of the rectus abdominis muscle are separated by at least 2.7 cm. This happens when the collagen sheath that exists between the rectus muscles stretches beyond a certain limit. The recti muscles generally separate and move apart in pregnant women due to the development of fetus in the womb. In some cases, this intramuscular gap will not be closed on its own, leading to DRA. The primary treatment procedures of DRA involve different therapeutic exercises to reduce the inter-recti distance. However, it is tedious for the physiotherapists to constantly monitor the patients and ensure that the exercises are being done correctly. The objective of this research is to analyze the correctness of such performed exercises using electromyogram (EMG) signals and machine learning. To the best of our knowledge, this is the first work reporting the objective evaluation of rehabilitation exercises for DRA. Experimental studies indicate that the surface EMG signals were effective in classifying the correctly and incorrectly performed movements. An extensive analysis was carried out with different machine learning models for classification. It was inferred that the RUSBoosted Ensembled classifier was effective in differentiating these movements with an accuracy of 92.3%.
Collapse
|
5
|
Muscle Co-Contraction Detection in the Time-Frequency Domain. SENSORS 2022; 22:s22134886. [PMID: 35808382 PMCID: PMC9269699 DOI: 10.3390/s22134886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Background: Muscle co-contraction plays a significant role in motion control. Available detection methods typically only provide information in the time domain. The current investigation proposed a novel approach for muscle co-contraction detection in the time–frequency domain, based on continuous wavelet transform (CWT). Methods: In the current study, the CWT-based cross-energy localization of two surface electromyographic (sEMG) signals in the time–frequency domain, i.e., the CWT coscalogram, was adopted for the first time to characterize muscular co-contraction activity. A CWT-based denoising procedure was applied for removing noise from the sEMG signals. Algorithm performances were checked on synthetic and real sEMG signals, stratified for signal-to-noise ratio (SNR), and then validated against an approach based on the acknowledged double-threshold statistical algorithm (DT). Results: The CWT approach provided an accurate prediction of co-contraction timing in simulated and real datasets, minimally affected by SNR variability. The novel contribution consisted of providing the frequency values of each muscle co-contraction detected in the time domain, allowing us to reveal a wide variability in the frequency content between subjects and within stride. Conclusions: The CWT approach represents a relevant improvement over state-of-the-art approaches that provide only a numerical co-contraction index or, at best, dynamic information in the time domain. The robustness of the methodology and the physiological reliability of the experimental results support the suitability of this approach for clinical applications.
Collapse
|
6
|
Balbinot G, Joner Wiest M, Li G, Pakosh M, Cesar Furlan J, Kalsi-Ryan S, Zariffa J. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: A scoping review. Clin Neurophysiol 2022; 138:61-73. [PMID: 35364465 DOI: 10.1016/j.clinph.2022.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Surface electromyography (sEMG) is a common electrophysiological assessment used in clinical trials in individuals with spinal cord injury (SCI). This scoping review summarizes the most common sEMG techniques used to address clinically relevant neurorehabilitation questions. We focused on the role of sEMG assessments in the clinical practice and research studies on neurorehabilitation after SCI, and how sEMG reflects the changes observed with rehabilitation. Additionally, this review emphasizes the limitations and pitfalls of the sEMG assessments in the field of neurorehabilitation after SCI. METHODS A comprehensive search of Medline (Ovid), Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Embase, Emcare, Cumulative Index to Nursing & Allied Health Literature, and PubMed was conducted to find peer-reviewed journal articles that included individuals post-SCI that participated in neurorehabilitation interventions using sEMG assessments. This is a scoping review using a systematic search (hybrid review). RESULTS Of 4522 references captured in the primary database searches, 100 references were selected and included in the scoping review. The main focus of the studies was on neurorehabilitation using sEMG biofeedback, brain stimulation, locomotor training, neuromuscular electrical stimulation (NMES), paired-pulse stimulation, pharmacology, posture and balance training, spinal cord stimulation, upper limb training, vibration, and photobiomodulation. CONCLUSIONS Most studies employed sEMG amplitude to understand the effects of neurorehabilitation on muscle activation during volitional efforts or reduction of spontaneous muscle activity (e.g., spasms, spasticity, and hypertonia). Further studies are needed to understand the long-term reliability of sEMG amplitude, to circumvent normalization issues, and to provide a deeper physiological background to the different sEMG analyses. SIGNIFICANCE This scoping review reveals the potential of sEMG in exploring promising neurorehabilitation strategies following SCI and discusses the barriers limiting its widespread use in the clinic.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.
| | - Matheus Joner Wiest
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Guijin Li
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Canada
| | - Julio Cesar Furlan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Canada; Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Canada; Institute of Medical Sciences, University of Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Physical Therapy, University of Toronto, Canada
| | - José Zariffa
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada
| |
Collapse
|
7
|
Błaszczyszyn M, Borysiuk Z, Piechota K, Kręcisz K, Zmarzły D. Wavelet coherence as a measure of trunk stabilizer muscle activation in wheelchair fencers. BMC Sports Sci Med Rehabil 2021; 13:140. [PMID: 34717749 PMCID: PMC8557511 DOI: 10.1186/s13102-021-00369-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Intermuscular synchronization constitutes one of the key aspects of effective sport performance and activities of daily living. The aim of the study was to assess the synchronization of trunk stabilizer muscles in wheelchair fencers with the use of wavelet analysis. METHODS Intermuscular synchronization and antagonistic EMG-EMG coherence were evaluated in the pairs of the right and the left latissimus dorsi/external oblique abdominal (LD/EOA) muscles. The study group consisted of 16 wheelchair fencers, members of the Polish Paralympic Team, divided into two categories of disability (A and B). Data analysis was carried out in three stages: (1) muscle activation recording using sEMG; (2) wavelet coherence analysis; and (3) coherence density analysis. RESULTS In the Paralympic wheelchair fencers, regardless of their disability category, the muscles were activated at low frequency levels: 8-20 Hz for category A fencers, and 5-15 Hz for category B fencers. CONCLUSIONS The results demonstrated a clear activity of the trunk muscles in the wheelchair fencers, including those with spinal cord injury, which can be explained as an outcome of their intense training. EMG signal processing application have great potential for performance improvement and diagnosis of wheelchair athletes.
Collapse
Affiliation(s)
- Monika Błaszczyszyn
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland.
| | - Zbigniew Borysiuk
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Katarzyna Piechota
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Krzysztof Kręcisz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Dariusz Zmarzły
- Faculty of Electrical Engineering, Automatics and Computer Science, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| |
Collapse
|
8
|
Alam M, Ling YT, Wong AYL, Zhong H, Edgerton VR, Zheng YP. Reversing 21 years of chronic paralysis via non-invasive spinal cord neuromodulation: a case study. Ann Clin Transl Neurol 2020; 7:829-838. [PMID: 32436278 PMCID: PMC7261759 DOI: 10.1002/acn3.51051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The objective of the current study was to investigate if a non-invasive spinal cord neuromodulation modality could restore sensorimotor functions in a patient with chronic spinal cord injury (SCI). METHODS In this study, transcutaneous electrical stimulation (tES) to the spinal cord was utilized to restore sensorimotor functions in a chronic SCI patient who sustained a traumatic C7 cervical cord injury 21 years ago. At baseline, the patient had very limited volitional movement in her right leg, and her left leg was completely paralyzed. tES parameters were optimized in eight stimulation sessions before the treatment. The therapeutic stimulation involved biphasic tES, applied to T11 and L1 spinal levels during a 1-hour standing and walking training, 2-4 times per week for 16 weeks. RESULTS Our pre-treatment tests indicated that a shorter burst duration (100 µsec) was more effective than a longer burst duration of tES in improving functional movements. After 32 training sessions with tES, the patient regained significant left-leg volitional movements (grade 0 to grade 10 according to the ISNCSCI scale). Right-leg motor scores also increased from 17 to 21. The tES treatment also improved her pinprick sensation (from 73 to 79). Upon completion of the treatment (52 sessions), the patient's standing ability noticeably improved. She could stabilize her knee to stand without any assistance. She could also squat while holding onto a walker. INTERPRETATION These promising results demonstrate beneficial effects of non-invasive tES in regaining volitional control of plegic lower limbs in patients with chronic paralysis.
Collapse
Affiliation(s)
- Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yan To Ling
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Arnold Y L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hui Zhong
- Department of Neurobiology, University of California, Los Angeles, CA
| | - Victor Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, CA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|