Stark NEP, Begonia MT, Rowson S. Evaluating Polo Helmet Performance Across Different Impact Test Systems.
Ann Biomed Eng 2025:10.1007/s10439-025-03731-0. [PMID:
40246778 DOI:
10.1007/s10439-025-03731-0]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE
This study evaluated head impact response between different helmet impact test systems by comparing the performance of ten polo helmets.
METHODS
Helmets were evaluated using three test systems: a twin-wire guided drop tower, an oblique drop tower, and an impact pendulum. Impact tests were conducted at matched locations (front boss, side, rear boss) and speeds (3.46, 5.46 m/s). We employed a linear mixed model with helmet model as a random effect and calculated the least square mean differences between systems for peak linear acceleration (PLA), peak rotational acceleration (PRA), peak rotational velocity (PRV), and concussion risk. Correlations between systems by impact speed were explored, using linear models of each system as a function of the others, and calculated Spearman rank correlation coefficients between test systems for each dependent variable.
RESULTS
Our results found distinct differences in PRA and concussion risk between the oblique and the pendulum impact systems due to the driving force. The acceleration range across helmet models was substantial, and responses differed between test systems at matched impact conditions. However, there were similarities between test systems in the rank order of helmet models. Head acceleration differences between helmets translated to larger differences in concussion risk between helmet models.
CONCLUSION
These trends provide a framework for comparing the headform's response across varying loading conditions. When selecting a test system to evaluate helmets for a specific sport, it is essential to consider the relevant impact conditions and loading patterns to ensure that laboratory tests accurately represent real-world scenarios.
Collapse