1
|
Noorizadeh N, Varner JA, Birg L, Williard T, Rezaie R, Wheless J, Narayana S. Comparing the efficacy of awake and sedated MEG to TMS in mapping hand sensorimotor cortex in a clinical cohort. Neuroimage Clin 2024; 41:103562. [PMID: 38215622 PMCID: PMC10821581 DOI: 10.1016/j.nicl.2024.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/19/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Non-invasive methods such as Transcranial Magnetic Stimulation (TMS) and magnetoencephalography (MEG) aid in the pre-surgical evaluation of patients with epilepsy or brain tumor to identify sensorimotor cortices. MEG requires sedation in children or patients with developmental delay. However, TMS can be applied to awake patients of all ages with any cognitive abilities. In this study, we compared the efficacy of TMS with MEG (in awake and sedated states) in identifying the hand sensorimotor areas in patients with epilepsy or brain tumors. We identified 153 patients who underwent awake- (n = 98) or sedated-MEG (n = 55), along with awake TMS for hand sensorimotor mapping as part of their pre-surgical evaluation. TMS involved stimulating the precentral gyrus and recording electromyography responses, while MEG identified the somatosensory cortex during median nerve stimulation. Awake-MEG had a success rate of 92.35 % and TMS had 99.49 % (p-value = 0.5517). However, in the sedated-MEG cohort, TMS success rate of 95.61 % was significantly higher compared to MEG's 58.77 % (p-value = 0.0001). Factors affecting mapping success were analyzed. Logistic regression across the entire cohort identified patient sedation as the lone significant predictor, contrary to age, lesion, metal, and number of antiseizure medications (ASMs). A subsequent analysis replaced sedation with anesthetic drug dosage, revealing no significant predictors impacting somatosensory mapping success under sedation. This study yields insights into the utility of TMS and MEG in mapping hand sensorimotor cortices and underscores the importance of considering factors that influence eloquent cortex mapping limitations during sedation.
Collapse
Affiliation(s)
- Negar Noorizadeh
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Jackie Austin Varner
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Liliya Birg
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Theresa Williard
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Roozbeh Rezaie
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - James Wheless
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Shalini Narayana
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
2
|
Tyner K, Das S, McCumber M, Alfatlawi M, Gliske SV. An Automated Algorithm for the Identification of Somatosensory Cortex Using Magnetoencephalography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082586 DOI: 10.1109/embc40787.2023.10340978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The localization of eloquent cortex is crucial for many neurosurgical applications, such as epilepsy and tumor resection. Non-invasive localization of these cortical areas using magnetoencephalography (MEG) is generally performed using equivalent current dipoles. While this method is clinically validated, source localization depends on several subjective parameters. This paper aimed to develop an automated algorithm for identifying the cortical area activated during a somatosensory task from MEG recordings. Our algorithm uses singular value decomposition to outline the cortical area involved in this task. For proof of concept, we evaluate our algorithm using data from 10 subjects with epilepsy. Our algorithm has a statistically significant overlap with the somatosensory cortex (the expected active area in healthy subjects) in 6 of 10 subjects. Having thus demonstrated proof of concept, we conclude that our algorithm is ready for further testing in a larger cohort of subjects.Clinical relevance- Our algorithm identifies the dominant cortical area and boundary of the cortical tissue involved in a task-related response.
Collapse
|
3
|
Spooner RK, Madhavan D, Aizenberg MR, Wilson TW. Retrospective comparison of motor and somatosensory MEG mapping-Considerations for better clinical applications. Neuroimage Clin 2022; 35:103045. [PMID: 35597033 PMCID: PMC9123261 DOI: 10.1016/j.nicl.2022.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
MEG is a clinically validated tool for presurgical functional mapping. The success rate for MEG somatosensory and motor mapping is not fully known. Comprehensive mapping protocols increase the accuracy of sensorimotor mapping. Major sources of mapping failures include low SNR, magnetic artifacts, and motion. Recommendations for improving mapping success rates in the future are discussed.
While magnetoencephalography (MEG) has proven to be a valuable and reliable tool for presurgical functional mapping of eloquent cortices for at least two decades, widespread use of this technique by clinicians has remained elusive. This modest application may be attributable, at least in part, to misunderstandings regarding the success rate of such mapping procedures, as well as the primary sources contributing to mapping failures. To address this, we conducted a retrospective comparison of sensorimotor functional mapping success rates in 141 patients with epilepsy and 75 tumor patients from the Center for MEG in Omaha, NE. Neurosurgical candidates either completed motor mapping (i.e., finger tapping paradigm), somatosensory mapping (i.e., peripheral stimulation paradigm), or both motor and somatosensory protocols during MEG. All MEG data underwent subsequent time-domain averaging and source localization of left and right primary motor (M1) and somatosensory (S1) cortices was conducted using a single equivalent dipole model. Successful mapping was determined based on dipole goodness of fit metrics ∼ 95%, as well as an accurate and conceivable spatial correspondence to precentral and postcentral gyri for M1 and S1, respectively. Our results suggest that mapping M1 in epilepsy and tumor patients was on average 94.5% successful, when patients only completed motor mapping protocols. In contrast, mapping S1 was successful 45–100% of the time in these patient groups when they only completed somatosensory mapping paradigms. Importantly, Z-tests for independent proportions revealed that the percentage of successful S1 mappings significantly increased to ∼ 94% in epilepsy patients who completed both motor/somatosensory mapping protocols during MEG. Together, these data suggest that ordering more comprehensive mapping procedures (e.g., both motor and somatosensory protocols for a collective sensorimotor network) may substantially increase the accuracy of presurgical functional mapping by providing more extensive data from which to base interpretations. Moreover, clinicians and magnetoencephalographers should be considerate of the major contributors to mapping failures (i.e., low SNR, excessive motion and magnetic artifacts) in order to further increase the percentage of cases achieving successful mapping of eloquent cortices.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Deepak Madhavan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
4
|
An N, Cao F, Li W, Wang W, Xu W, Wang C, Xiang M, Gao Y, Sui B, Liang A, Ning X. Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach. iScience 2022; 25:103752. [PMID: 35118364 PMCID: PMC8800110 DOI: 10.1016/j.isci.2022.103752] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) has shown potential for analyzing brain activity. It has a flexible sensor configuration and comparable sensitivity to conventional SQUID-MEG. We constructed a 32-channel OPM-MEG system and used it to measure cortical responses to median and ulnar nerve stimulations. Traditional magnetic source imaging methods tend to blur the spatial extent of sources. Accurate estimation of the spatial size of the source is important for studying the organization of brain somatotopy and for pre-surgical functional mapping. We proposed a new method called variational free energy-based spatial smoothing estimation (FESSE) to enhance the accuracy of mapping somatosensory cortex responses. A series of computer simulations based on the OPM-MEG showed better performance than the three types of competing methods under different levels of signal-to-noise ratios, source patch sizes, and co-registration errors. FESSE was then applied to the source imaging of the OPM-MEG experimental data.
Collapse
Affiliation(s)
- Nan An
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Fuzhi Cao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wen Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wenli Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Weinan Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Chunhui Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Min Xiang
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
| | - Yang Gao
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Binbin Sui
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Aimin Liang
- Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Xiaolin Ning
- Research Institute of Frontier Science, Beihang University, Beijing 100191, China
- Hangzhou Innovation Institute, Beihang University, Hangzhou 100191, China
| |
Collapse
|
5
|
MEG-Derived Symptom-Sensitive Biomarkers with Long-Term Test-Retest Reliability. Diagnostics (Basel) 2021; 12:diagnostics12010084. [PMID: 35054252 PMCID: PMC8775104 DOI: 10.3390/diagnostics12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroelectric measures derived from human magnetoencephalographic (MEG) recordings hold promise as aides to diagnosis and treatment monitoring and targeting for chronic sequelae of traumatic brain injury (TBI). This study tests novel MEG-derived regional brain measures of tonic neuroelectric activation for long-term test-retest reliability and sensitivity to symptoms. Resting state MEG recordings were obtained from a normative cohort (CamCAN, baseline: n = 613; mean 16-month follow-up: n = 245) and a chronic symptomatic TBI cohort (TEAM-TBI, baseline: n = 62; mean 6-month follow-up: n = 40). The MEG-derived neuroelectric measures were corrected for the empty-room contribution using a random forest classifier. The mean 16-month correlation between baseline and 16-month follow-up CamCAN measures was 0.67; test-retest reliability was markedly improved in this study compared with previous work. The TEAM-TBI cohort was screened for depression, somatization, and anxiety with the Brief Symptom Inventory and for insomnia with the Insomnia Severity Index and was assessed via adjudication for six clinical syndromes: chronic pain, psychological health, and oculomotor, vestibular, cognitive, and sleep dysfunction. Linear classifiers constructed from the 136 regional measures from each TEAM-TBI cohort member distinguished those with and without each symptom, p < 0.0003 for each, i.e., the tonic regional neuroelectric measures of activation are sensitive to the presence/absence of these symptoms and clinical syndromes. The novel regional MEG-derived neuroelectric measures obtained and tested in this study demonstrate the necessary and sufficient properties to be clinically useful, i.e., good test-retest reliability, sensitivity to symptoms in each individual, and obtainable using automatic processing without human judgement or intervention.
Collapse
|
6
|
Otsubo H, Ogawa H, Pang E, Wong SM, Ibrahim GM, Widjaja E. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice. Expert Rev Neurother 2021; 21:1225-1240. [PMID: 33780318 DOI: 10.1080/14737175.2021.1910024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Magnetoencephalography (MEG) is a noninvasive technique that is used for presurgical evaluation of children with drug-resistant epilepsy (DRE).Areas covered: The contributions of MEG for localizing the epileptogenic zone are discussed, in particular in extra-temporal lobe epilepsy and focal cortical dysplasia, which are common in children, as well as in difficult to localize epilepsy such as operculo-insular epilepsy. Further, the authors review current evidence on MEG for mapping eloquent cortex, its performance, application in clinical practice, and potential challenges.Expert opinion: MEG could change the clinical management of children with DRE by directing placement of intracranial electrodes thereby enhancing their yield. With improved identification of a circumscribed epileptogenic zone, MEG could render more patients as suitable candidates for epilepsy surgery and increase utilization of surgery.
Collapse
Affiliation(s)
- Hiroshi Otsubo
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Hiroshi Ogawa
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elizabeth Pang
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Simeon M Wong
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elysa Widjaja
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
7
|
McCusker MC, Lew BJ, Wilson TW. Three-Year Reliability of MEG Visual and Somatosensory Responses. Cereb Cortex 2021; 31:2534-2548. [PMID: 33341876 DOI: 10.1093/cercor/bhaa372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
A major goal of many translational neuroimaging studies is the identification of biomarkers of disease. However, a prerequisite for any such biomarker is robust reliability, which for magnetoencephalography (MEG) and many other imaging modalities has not been established. In this study, we examined the reliability of visual (Experiment 1) and somatosensory gating (Experiment 2) responses in 19 healthy adults who repeated these experiments for three visits spaced 18 months apart. Visual oscillatory and somatosensory oscillatory and evoked responses were imaged, and intraclass correlation coefficients (ICC) were computed to examine the long-term reliability of these responses. In Experiment 1, ICCs showed good reliability for visual theta and alpha responses in occipital cortices, but poor reliability for gamma responses. In Experiment 2, the time series of somatosensory gamma and evoked responses in the contralateral somatosensory cortex showed good reliability. Finally, analyses of spontaneous baseline activity indicated excellent reliability for occipital alpha, moderate reliability for occipital theta, and poor reliability for visual/somatosensory gamma activity. Overall, MEG responses to visual and somatosensory stimuli show a high degree of reliability across 3 years and therefore may be stable indicators of sensory processing long term and thereby of potential interest as biomarkers of disease.
Collapse
Affiliation(s)
- Marie C McCusker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, 68010, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, 68010, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, 68010, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
8
|
Krieger D, Shepard P, Soose R, Puccio AM, Beers S, Schneider W, Kontos AP, Collins MW, Okonkwo DO. Symptom-Dependent Changes in MEG-Derived Neuroelectric Brain Activity in Traumatic Brain Injury Patients with Chronic Symptoms. Med Sci (Basel) 2021; 9:medsci9020020. [PMID: 33806153 PMCID: PMC8103254 DOI: 10.3390/medsci9020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Neuroelectric measures derived from human magnetoencephalographic (MEG) recordings hold promise as aides to diagnosis and treatment monitoring and targeting for chronic sequelae of traumatic brain injury (TBI). This study tests novel MEG-derived regional brain measures of tonic neuroelectric activation for long-term test-retest reliability and sensitivity to symptoms. Resting state MEG recordings were obtained from a normative cohort, Cambridge Centre for Ageing and Neuroscience (CamCAN), baseline: n = 619; mean 16-month follow-up: n = 253) and a chronic symptomatic TBI cohort, Targeted Evaluation, Action and Monitoring of Traumatic Brain Injury (TEAM-TBI), baseline: n = 64; mean 6-month follow-up: n = 39). For the CamCAN cohort, MEG-derived neuroelectric measures showed good long-term test-retest reliability for most of the 103 automatically identified stereotypic regions. The TEAM-TBI cohort was screened for depression, somatization, and anxiety with the Brief Symptom Inventory and for insomnia with the Insomnia Severity Index. Linear classifiers constructed from the 103 regional measures from each TEAM-TBI cohort member distinguished those with and without each symptom, with p < 0.01 for each-i.e., the tonic regional neuroelectric measures of activation are sensitive to the presence/absence of these symptoms. The novel regional MEG-derived neuroelectric measures obtained and tested in this study demonstrate the necessary and sufficient properties to be clinically useful-i.e., good test-retest reliability, sensitivity to symptoms in each individual, and obtainable using automatic processing without human judgement or intervention.
Collapse
Affiliation(s)
- Don Krieger
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.M.P.); (D.O.O.)
- Correspondence:
| | - Paul Shepard
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ryan Soose
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.M.P.); (D.O.O.)
| | - Sue Beers
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Walter Schneider
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Anthony P. Kontos
- Department of Sports Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.P.K.); (M.W.C.)
| | - Michael W. Collins
- Department of Sports Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.P.K.); (M.W.C.)
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.M.P.); (D.O.O.)
| |
Collapse
|
9
|
Sensorimotor Mapping With MEG: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines. J Clin Neurophysiol 2021; 37:564-573. [PMID: 33165229 DOI: 10.1097/wnp.0000000000000481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this article, we present the clinical indications and advances in the use of magnetoencephalography to map the primary sensorimotor (SM1) cortex in neurosurgical patients noninvasively. We emphasize the advantages of magnetoencephalography over sensorimotor mapping using functional magnetic resonance imaging. Recommendations to the referring physicians and the clinical magnetoencephalographers to achieve appropriate sensorimotor cortex mapping using magnetoencephalography are proposed. We finally provide some practical advice for the use of corticomuscular coherence, cortico-kinematic coherence, and mu rhythm suppression in this indication. Magnetoencephalography should now be considered as a method of reference for presurgical functional mapping of the sensorimotor cortex.
Collapse
|
10
|
Bowyer SM, Pang EW, Huang M, Papanicolaou AC, Lee RR. Presurgical Functional Mapping with Magnetoencephalography. Neuroimaging Clin N Am 2020; 30:159-174. [DOI: 10.1016/j.nic.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Pfeiffer C, Ruffieux S, Andersen LM, Kalabukhov A, Winkler D, Oostenveld R, Lundqvist D, Schneiderman JF. On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration. Neuroimage 2020; 212:116686. [PMID: 32119981 DOI: 10.1016/j.neuroimage.2020.116686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022] Open
Abstract
Source modelling in magnetoencephalography (MEG) requires precise co-registration of the sensor array and the anatomical structure of the measured individual's head. In conventional MEG, the positions and orientations of the sensors relative to each other are fixed and known beforehand, requiring only localization of the head relative to the sensor array. Since the sensors in on-scalp MEG are positioned on the scalp, locations of the individual sensors depend on the subject's head shape and size. The positions and orientations of on-scalp sensors must therefore be measured at every recording. This can be achieved by inverting conventional head localization, localizing the sensors relative to the head - rather than the other way around. In this study we present a practical method for localizing sensors using magnetic dipole-like coils attached to the subject's head. We implement and evaluate the method in a set of on-scalp MEG recordings using a 7-channel on-scalp MEG system based on high critical temperature superconducting quantum interference devices (high-Tc SQUIDs). The method allows individually localizing the sensor positions, orientations, and responsivities with high accuracy using only a short averaging time (≤ 2 mm, < 3° and < 3%, respectively, with 1-s averaging), enabling continuous sensor localization. Calibrating and jointly localizing the sensor array can further improve the accuracy of position and orientation (< 1 mm and < 1°, respectively, with 1-s coil recordings). We demonstrate source localization of on-scalp recorded somatosensory evoked activity based on co-registration with our method. Equivalent current dipole fits of the evoked responses corresponded well (within 4.2 mm) with those based on a commercial, whole-head MEG system.
Collapse
Affiliation(s)
- Christoph Pfeiffer
- Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, Gothenburg, Sweden.
| | - Silvia Ruffieux
- Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, Gothenburg, Sweden
| | - Lau M Andersen
- NatMEG, Department of Clinical Neuroscience, The Karolinska Institute, Stockholm, Sweden
| | - Alexei Kalabukhov
- Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, Gothenburg, Sweden
| | - Dag Winkler
- Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, Gothenburg, Sweden
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, The Karolinska Institute, Stockholm, Sweden
| | - Justin F Schneiderman
- MedTech West and the Insitute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Kreidenhuber R, De Tiège X, Rampp S. Presurgical Functional Cortical Mapping Using Electromagnetic Source Imaging. Front Neurol 2019; 10:628. [PMID: 31249552 PMCID: PMC6584755 DOI: 10.3389/fneur.2019.00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Preoperative localization of functionally eloquent cortex (functional cortical mapping) is common clinical practice in order to avoid or reduce postoperative morbidity. This review aims at providing a general overview of magnetoencephalography (MEG) and high-density electroencephalography (hdEEG) based methods and their clinical role as compared to common alternatives for functional cortical mapping of (1) verbal language function, (2) sensorimotor cortex, (3) memory, (4) visual, and (5) auditory cortex. We highlight strengths, weaknesses and limitations of these functional cortical mapping modalities based on findings in the recent literature. We also compare their performance relative to other non-invasive functional cortical mapping methods, such as functional Magnetic Resonance Imaging (fMRI), Transcranial Magnetic Stimulation (TMS), and to invasive methods like the intracarotid Amobarbital Test (WADA-Test) or intracranial investigations.
Collapse
Affiliation(s)
- Rudolf Kreidenhuber
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany.,Department of Neurosurgery, University Hospital Halle, Halle, Germany
| |
Collapse
|
13
|
Abstract
To estimate the neural generators of magnetoencephalographic (MEG) signals, MEG data have to be co-registered with an anatomical image, typically an MR image. Optically-pumped magnetometers (OPMs) enable the construction of on-scalp MEG systems providing higher sensitivity and spatial resolution than conventional SQUID-based MEG systems. We present a co-registration method that can be applied to on-scalp MEG systems, regardless of the number of sensors. We apply a structured-light scanner to create a surface mesh of the subject’s head and the sensor array, which we fit to the MR image. We quantified the reproducibility of the mesh and localised current dipoles with a phantom. Additionally, we measured somatosensory evoked fields (SEFs) to median nerve stimulation and compared the dipole positions between on-scalp and SQUID-based systems. The scanner reproduced the head surface with <1 mm error. Phantom dipoles were localised with 2.1 mm mean error. SEF dipoles corresponding to the P35m response for OPMs were well localised to the somatosensory cortex, while SQUID dipoles for two subjects were erroneously localised to the motor cortex. The developed co-registration method is inexpensive, fast and can easily be applied to on-scalp MEG. It is more convenient than traditional co-registration methods while also being more accurate.
Collapse
|
14
|
Electroencephalography, magnetoencephalography and source localization: their value in epilepsy. Curr Opin Neurol 2019; 31:176-183. [PMID: 29432218 DOI: 10.1097/wco.0000000000000545] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Source localization of cerebral activity using electroencephalography (EEG) or magnetoencephalography (MEG) can reveal noninvasively the generators of the abnormal signals recorded in epilepsy, such as interictal epileptic discharges (IEDs) and seizures. Here, we review recent progress showcasing the usefulness of these techniques in treating patients with drug-resistant epilepsy. RECENT FINDINGS The source localization of IEDs by high-density EEG and MEG has now been proved in large patient cohorts to be accurate and clinically relevant, with positive and negative predictive values rivaling those of structural MRI. Localizing seizure onsets is an emerging technique that seems to perform similarly well to the localization of interictal spikes, although there remain questions regarding the processing of signals for reliable results. The localization of somatosensory cortex using EEG/MEG is well established. The localization of language cortex is less reliable, although progress has been made regarding hemispheric lateralization. Source localization is also able to reveal how epilepsy alters the dynamics of neuronal activity in the large-scale networks that underlie cerebral function. SUMMARY Given the high performance of EEG/MEG source localization, these tools should find a place similar to that of established techniques like MRI in the assessment of patients for epilepsy surgery.
Collapse
|
15
|
Bardouille T, Power L, Lalancette M, Bishop R, Beyea S, Taylor MJ, Dunkley BT. Variability and bias between magnetoencephalography systems in non-invasive localization of the primary somatosensory cortex. Clin Neurol Neurosurg 2018; 171:63-69. [PMID: 29843072 DOI: 10.1016/j.clineuro.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Magnetoencephalography (MEG) provides functional neuroimaging data for pre-surgical planning in patients with epilepsy or brain tumour. For mapping the primary somatosensory cortex (S1), MEG data are acquired while a patient undergoes median nerve stimulation (MNS) to localize components of the somatosensory evoked field (SEF). In clinical settings, only one MEG imaging session is usually possible due to limited resources. As such, it is important to have an a priori estimate of the expected variability in localization. Variability in S1 localization between mapping sessions using the same MEG system has been previously measured as 8 mm. There are different types of MEG systems available with varied hardware and software, and it is not known how using a different MEG system will impact on S1 localization. PATIENTS AND METHODS In our study, healthy participants underwent the MNS procedure with two different MEG systems (Vector View and CTF). We compared the location, amplitude and latency of SEF components between data from each system to quantify variability and bias between MEG systems. RESULTS We found 8-11 mm variability in S1 localization between the two MEG systems, and no evidence for a systematic bias in location, amplitude or latency between the two systems. CONCLUSION These findings suggest that S1 localization is not biased by the type of MEG system used, and that differences between the two systems are not a major contributor to variability in localization.
Collapse
Affiliation(s)
- Timothy Bardouille
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS, B3H 4R2, Canada; Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre, 5980 University Street, Halifax, NS, B3K 6R8, Canada; Department of Diagnostic Radiology, Dalhousie University, Room 319, Victoria Building, 1276 South Park St, Halifax, NS B3H 2Y9, Canada.
| | - Lindsey Power
- Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre, 5980 University Street, Halifax, NS, B3K 6R8, Canada.
| | - Marc Lalancette
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| | - Ronald Bishop
- Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre, 5980 University Street, Halifax, NS, B3K 6R8, Canada.
| | - Steven Beyea
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS, B3H 4R2, Canada; Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre, 5980 University Street, Halifax, NS, B3K 6R8, Canada; Department of Diagnostic Radiology, Dalhousie University, Room 319, Victoria Building, 1276 South Park St, Halifax, NS B3H 2Y9, Canada.
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
16
|
Presurgical electromagnetic functional brain mapping in refractory focal epilepsy. ZEITSCHRIFT FUR EPILEPTOLOGIE 2018. [DOI: 10.1007/s10309-018-0189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|