1
|
Pušnik L, Gabor A, Radochová B, Janáček J, Saudek F, Alibegović A, Serša I, Cvetko E, Umek N, Snoj Ž. High-Field Diffusion Tensor Imaging of Median, Tibial, and Sural Nerves in Type 2 Diabetes With Morphometric Analysis. J Neuroimaging 2025; 35:e70025. [PMID: 39962292 PMCID: PMC11832795 DOI: 10.1111/jon.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND PURPOSE The primary objective was to compare diffusion tensor imaging (DTI) scalar parameters of peripheral nerves between subjects with type 2 diabetes mellitus (T2DM) and those without diabetes. Secondarily, we aimed to correlate DTI scalar parameters with nerve morphometric properties. METHODS Median, tibial, and sural nerves were harvested from 34 male cadavers (17 T2DM, 17 nondiabetic). Each nerve was divided into three segments. The initial segment was scanned using 9.4 Tesla MRI system (three-dimensional pulsed-gradient spin-echo sequence). DTI scalars were calculated from region-average diffusion-weighted signals. Second segment was optically cleared, acquired with optical projection tomography (OPT), and analyzed for morphometrical properties. Toluidine-stained sections were prepared from last segment, and axon- and myelin-related properties were evaluated. RESULTS DTI scalar parameters of median and tibial nerves were comparable between the groups, while sural nerves of T2DM exhibited on average 41% higher mean diffusivity (MD) (p = 0.03), 38% higher radial diffusivity (RD) (p = 0.03), and 27% lower fractional anisotropy (FA) (p = 0.005). Significant differences in toluidine-evaluated parameters of sural nerves were observed between the groups, with a positive correlation between FA with fiber density (p = 0.0001) and with myelin proportion (p < 0.0001) and an inverse correlation between RD and myelin proportion (p = 0.003). OPT-measured morphometric properties did not correlate with DTI scalar parameters. CONCLUSIONS High-field DTI shows promise as an imaging technique for detecting axonal and myelin-related changes in small sural nerves ex vivo. The reduced fiber density and decreased myelin content, which can be observed in T2DM, likely contribute to observed FA reduction and increased MD/RD.
Collapse
Affiliation(s)
- Luka Pušnik
- Institute of AnatomyFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Aljoša Gabor
- Institute of AnatomyFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Barbora Radochová
- Laboratory of BiomathematicsInstitute of PhysiologyThe Czech Academy of SciencesPragueCzech Republic
| | - Jiří Janáček
- Laboratory of BiomathematicsInstitute of PhysiologyThe Czech Academy of SciencesPragueCzech Republic
| | - František Saudek
- Diabetes CentreInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Armin Alibegović
- Institute of Forensic MedicineFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Igor Serša
- Institute of AnatomyFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
- Department of Condensed Matter PhysicsJožef Stefan InstituteLjubljanaSlovenia
| | - Erika Cvetko
- Institute of AnatomyFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Nejc Umek
- Institute of AnatomyFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Žiga Snoj
- Department of RadiologyFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
- Institute of RadiologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| |
Collapse
|
2
|
Naik S, Mahanty S, Bhoi SK, Lahre Y, Bag ND, Mohakud S. MRI of wrist and diffusion tensor imaging of the median nerve in patients with carpal tunnel syndrome. J Neurosci Rural Pract 2023; 14:302-307. [PMID: 37181193 PMCID: PMC10174157 DOI: 10.25259/jnrp_57_2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/25/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives Diagnosis of carpal tunnel syndrome (CTS) is based on the clinical symptoms and nerve conduction study. Magnetic resonance imaging (MRI) is non-invasive objective tool for assessing the median nerve and carpal tunnel. The purpose of this study was to evaluate MRI changes in patients with CTS, and compare them with healthy subjects. Materials and Methods Forty-three CTS patients and 43 age matched control were included and scanned in a 3T MRI scanner. Cross-sectional areas (CSA) of median nerve were measured at the level of distal radio-ulnar joint level (CSA1), proximal row of carpal bone (CSA2), and hook of hamate (CSA3). Flattening ratio (FR) of median nerve, thickness of flexor retinaculum, median nerve signal intensity, and thenar muscles were assessed. Fractional anisotropy (FA), average diffusion coefficient (ADC), and radial diffusivity (RD) of median nerve of CTS patients were obtained from diffusion tensor imaging (DTI) and compared with those of controls. Results Thirty-three patients (76.7%) were female. Mean duration of the pain was 7.4 ± 2.6 months. The mean CSA1 (13.2 ± 4.2 mm2), CSA2 (12.5 ± 3.5 mm2), and CSA3 (9.2 ± 1.5 mm2) in CTS patients were significantly higher compared to control group: CSA1 (10.15 ± 1.64 mm2), CSA2 (9.38 ± 1.37 mm2), and CSA3 (8.4 ± 0.9 mm2), (P = 0.001 in all). The mean FR of median nerve and thickness of flexor retinaculum were increased in CTS patients. The mean FA was reduced in CTS patients compared to control proximal to carpal tunnel and within the tunnel. Mean ADC and RD values were higher in CTS patients as compared to control for both levels. Conclusion MRI can detect subtle changes in the median nerve and thenar muscles in CTS and may be useful in equivocal cases and to exclude secondary causes of CTS. DTI shows reduced FA and increased ADC and RD in CTS patients.
Collapse
Affiliation(s)
- Suprava Naik
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Siladitya Mahanty
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sanjeev Kumar Bhoi
- Department of Neurology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Yuvraj Lahre
- Department of Neurology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Nerbadyswari Deep Bag
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sudipta Mohakud
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Kender Z, Jende JME, Kurz FT, Tsilingiris D, Schimpfle L, Sulaj A, von Rauchhaupt E, Bartl H, Mooshage C, Göpfert J, Nawroth P, Herzig S, Szendroedi J, Bendszus M, Kopf S. Sciatic nerve fractional anisotropy and neurofilament light chain protein are related to sensorimotor deficit of the upper and lower limbs in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1046690. [PMID: 37008917 PMCID: PMC10053786 DOI: 10.3389/fendo.2023.1046690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Diabetic sensorimotor polyneuropathy (DSPN) is one of the most prevalent and poorly understood diabetic microvascular complications. Recent studies have found that fractional anisotropy (FA), a marker for microstructural nerve integrity, is a sensitive parameter for the structural and functional nerve damage in DSPN. The aim of this study was to investigate the significance of proximal sciatic nerve's FA on different distal nerve fiber deficits of the upper and lower limbs and its correlation with the neuroaxonal biomarker, neurofilament light chain protein (NfL). MATERIALS AND METHODS Sixty-nine patients with type 2 diabetes (T2DM) and 30 healthy controls underwent detailed clinical and electrophysiological assessments, complete quantitative sensory testing (QST), and diffusion-weighted magnetic resonance neurography of the sciatic nerve. NfL was measured in the serum of healthy controls and patients with T2DM. Multivariate models were used to adjust for confounders of microvascular damage. RESULTS Patients with DSPN showed a 17% lower sciatic microstructural integrity compared to healthy controls (p<0.001). FA correlated with tibial and peroneal motor nerve conduction velocity (NCV) (r=0.6; p<0.001 and r=0.6; p<0.001) and sural sensory NCV (r=0.50; p<0.001). Participants with reduced sciatic nerve´s FA showed a loss of function of mechanical and thermal sensation of upper (r=0.3; p<0.01 and r=0.3; p<0.01) and lower (r=0.5; p<0.001 and r=0.3; p=<0.01) limbs and reduced functional performance of upper limbs (Purdue Pegboard Test for dominant hand; r=0.4; p<0.001). Increased levels of NfL and urinary albumin-creatinine ratio (ACR) were associated with loss of sciatic nerve´s FA (r=-0.5; p<0.001 and r= -0.3, p= 0.001). Of note, there was no correlation between sciatic FA and neuropathic symptoms or pain. CONCLUSION This is the first study showing that microstructural nerve integrity is associated with damage of different nerve fiber types and a neuroaxonal biomarker in DSPN. Furthermore, these findings show that proximal nerve damage is related to distal nerve function even before clinical symptoms occur. The microstructure of the proximal sciatic nerve and is also associated with functional nerve fiber deficits of the upper and lower limbs, suggesting that diabetic neuropathy involves structural changes of peripheral nerves of upper limbs too.
Collapse
Affiliation(s)
- Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- *Correspondence: Zoltan Kender,
| | - Johann M. E. Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T. Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Dimitrios Tsilingiris
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Lukas Schimpfle
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Alba Sulaj
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Ekaterina von Rauchhaupt
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Hannelore Bartl
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
| | - Stephan Herzig
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
- Joint-IDC Institute for Diabetes and Cancer, Helmholtz-Zentrum Munich, Munich, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| |
Collapse
|
4
|
Wako Y, Nakamura J, Eguchi Y, Hagiwara S, Miura M, Kawarai Y, Sugano M, Nawata K, Yoshino K, Toguchi Y, Masuda Y, Matsumoto K, Suzuki T, Orita S, Ohtori S. Diffusion tensor imaging and tractography of the sciatic and femoral nerves in healthy volunteers at 3T. J Orthop Surg Res 2017; 12:184. [PMID: 29187253 PMCID: PMC5707804 DOI: 10.1186/s13018-017-0690-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background The aim was to clarify the normal fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the sciatic and femoral nerves at the level of the hip joint and to visualize the neural tracts with diffusion tensor imaging (DTI). Methods Twenty-four healthy volunteers (12 men and 12 women, age 20–29 years) underwent DTI for visualization with tractography and quantification of FA and ADC values on a 3 Tesla MRI (b value = 800 s/mm2, motion probing gradient, 11 directions, time to repeat/echo time = 9000/72.6 ms, axial slice orientation, slice thickness = 3.0 mm with no inter-slice gap, field of view = 320 × 320 mm, 96 × 192 matrix, 75 slices, number of acquisitions = 4). Regions of interest in the sciatic nerve were defined at the femoral head, the S1 root, and the midpoint levels. The femoral nerve was evaluated at 3–4 cm proximal to the femoral head level. Results The tractography of the sciatic and femoral nerves were visualized in all participants. The mean FA values of the sciatic nerve were increased distally from the S1 root level, through the midpoint, and to the femoral head level (0.314, 0.446, 0.567, p = 0.001, respectively). The mean FA values of the femoral nerve were 0.565. The mean ADC values of the sciatic nerves were significantly lower in the S1 root level than in the midpoint and the femoral head level (1.481, 1.602, 1.591 × 10−3 × 10−3 mm2/s, p = 0.001, respectively). The ADC values of the femoral nerve were 1.439 × 10−3 mm2/s. FA and ADC values showed moderate to substantial inter- and intra-observer reliability without significant differences in gender or laterality. Conclusion Visualization and quantification of the sciatic and femoral nerves simultaneously around the hip joint were achieved in healthy young volunteers with DTI. Clinical application of DTI is expected to contribute to hip pain research.
Collapse
Affiliation(s)
- Yasushi Wako
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan.
| | - Junichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yawara Eguchi
- Department of Orthopedic Surgery, National Hospital Organization Shimoshizu National Hospital, 934-5, Shikawatashi, Yotsukaido city, Chiba, 284-0003, Japan
| | - Shigeo Hagiwara
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Michiaki Miura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yuya Kawarai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Masahiko Sugano
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Kento Nawata
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Kensuke Yoshino
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yasunari Toguchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Yoshitada Masuda
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Sumihisa Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba city, Chiba, 260-8677, Japan
| |
Collapse
|
5
|
Vaeggemose M, Pham M, Ringgaard S, Tankisi H, Ejskjaer N, Heiland S, Poulsen PL, Andersen H. Magnetic Resonance Neurography Visualizes Abnormalities in Sciatic and Tibial Nerves in Patients With Type 1 Diabetes and Neuropathy. Diabetes 2017; 66:1779-1788. [PMID: 28432188 DOI: 10.2337/db16-1049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 04/17/2017] [Indexed: 11/13/2022]
Abstract
This study evaluates whether diffusion tensor imaging magnetic resonance neurography (DTI-MRN), T2 relaxation time, and proton spin density can detect and grade neuropathic abnormalities in patients with type 1 diabetes. Patients with type 1 diabetes (n = 49) were included-11 with severe polyneuropathy (sDPN), 13 with mild polyneuropathy (mDPN), and 25 without polyneuropathy (nDPN)-along with 30 healthy control subjects (HCs). Clinical examinations, nerve conduction studies, and vibratory perception thresholds determined the presence and severity of DPN. DTI-MRN covered proximal (sciatic nerve) and distal (tibial nerve) nerve segments of the lower extremity. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were calculated, as were T2 relaxation time and proton spin density obtained from DTI-MRN. All magnetic resonance findings were related to the presence and severity of neuropathy. FA of the sciatic and tibial nerves was lowest in the sDPN group. Corresponding with this, proximal and distal ADCs were highest in patients with sDPN compared with patients with mDPN and nDPN, as well as the HCs. DTI-MRN correlated closely with the severity of neuropathy, demonstrating strong associations with sciatic and tibial nerve findings. Quantitative group differences in proton spin density were also significant, but less pronounced than those for DTI-MRN. In conclusion, DTI-MRN enables detection in peripheral nerves of abnormalities related to DPN, more so than proton spin density or T2 relaxation time. These abnormalities are likely to reflect pathology in sciatic and tibial nerve fibers.
Collapse
Affiliation(s)
- Michael Vaeggemose
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Mirko Pham
- Department of Neuroradiology, Würzburg University Hospital, Würzburg, Germany
| | | | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Ejskjaer
- Departments of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Per L Poulsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Vaeggemose M, Pham M, Ringgaard S, Tankisi H, Ejskjaer N, Heiland S, Poulsen PL, Andersen H. Diffusion tensor imaging MR neurography for the detection of polyneuropathy in type 1 diabetes. J Magn Reson Imaging 2016; 45:1125-1134. [PMID: 27472827 DOI: 10.1002/jmri.25415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To evaluate if diffusion tensor imaging MR neurography (DTI-MRN) can detect lesions of peripheral nerves in patients with type 1 diabetes. MATERIALS AND METHODS Eleven type 1 diabetic patients with polyneuropathy (DPN), 10 type 1 diabetic patients without polyneuropathy (nDPN), and 10 healthy controls (HC) were investigated with a 3T MRI scanner. Clinical examinations, nerve-conduction studies, and vibratory-perception thresholds determined the presence of DPN. DTI-MRN (voxel size: 1.4 × 1.4 × 3 mm3 ; b-values: 0, 800 s/mm2 ) covered proximal (sciatic nerve) and distal regions of the lower extremity (tibial nerve). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated and compared to T2 -relaxometry and proton-spin density obtained from a multiecho turbo spin echo (TSE) sequence. Furthermore, we evaluated DTI reproducibility, repeatability, and diagnostic accuracy. RESULTS DTI-MRN could accurately discriminate between DPN, nDPN, and HC. The proximal FA was lowest in DPN (DPN 0.37 ± 0.06; nDPN 0.47 ± 0.03; HC 0.49 ± 0.06; P < 0.01). In addition, distal FA was lowest in DPN (DPN 0.31 ± 0.05; nDPN 0.41 ± 0.07; HC 0.43 ± 0.08; P < 0.01). Likewise, proximal ADC was highest in DPN (DPN 1.69 ± 0.25 × 10-3 mm2 /s; nDPN 1.50 ± 0.06 × 10-3 mm2 /s; HC 1.42 ± 0.12 × 10-3 mm2 /s; P < 0.01) as was distal ADC (DPN 1.87 ± 0.45 × 10-3 mm2 /s; nDPN 1.59 ± 0.19 × 10-3 mm2 /s; HC 1.57 ± 0.26 × 10-3 mm2 /s; P = 0.09). The combined interclass-correlation (ICC) coefficient of DTI reproducibility and repeatability was high in the sciatic nerve (ICC: FA = 0.86; ADC = 0.85) and the tibial nerve (ICC: FA = 0.78; ADC = 0.66). T2 -relaxometry and proton-spin-density did not enable detection of neuropathy. CONCLUSION DTI-MRN accurately detects DPN by lower nerve FA and higher ADC. These alterations are likely to reflect proximal and distal nerve fiber pathology. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:1125-1134.
Collapse
Affiliation(s)
- Michael Vaeggemose
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Mirko Pham
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Per L Poulsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Jengojan S, Kovar F, Breitenseher J, Weber M, Prayer D, Kasprian G. Acute radial nerve entrapment at the spiral groove: detection by DTI-based neurography. Eur Radiol 2015; 25:1678-83. [PMID: 25576227 DOI: 10.1007/s00330-014-3562-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study evaluated the potential of three-tesla diffusion tensor imaging (DTI) and tractography to detect changes of the radial (RN) and median (MN) nerves during transient upper arm compression by a silicon ring tourniquet. METHODS Axial T2-weighted and DTI sequences (b = 700 s/mm(2), 16 gradient encoding directions) of 13 healthy volunteers were obtained. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the MN and RN were measured at the spiral groove and further visualized in 3D by deterministic tractography (thresholds: FA = .15, angle change = 27°). RESULTS Local/lesional RN FA values increased (p = 0.001) and ADC values decreased (p = 0.02) during a 20-min upper arm compression, whereas no significant FA (p = 0.49) or ADC (p = 0.73) changes of the MN were detected. There were no T2-w nerve signal changes or alterations of nerve trajectories in 3D. CONCLUSIONS Acute nerve compression of the RN leads to changes of its three-tesla DTI metrics. Peripheral nerve DTI provides non-invasive insights into the "selective" vulnerability of the RN at the spiral groove. KEY POINTS • DTI-based neurography detects nerve changes during acute nerve compression. • Compression leads to a transient increase in local radial nerve FA values. • DTI provides insights into radial nerve vulnerability at the spiral groove.
Collapse
Affiliation(s)
- Suren Jengojan
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuro- and Musculosceletal Radiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|